

Wasserversorgungskonzept
zur Sicherstellung der öffentlichen Wasserversorgung
nach § 38 Wassergesetz für das Land Nordrhein-Westfalen

Fachdienst Stadtplanung und Wirtschaftsförderung

Stand: August 2018
Beschlossen durch den Rat der Stadt Beckum
am 20. September 2018
Seitens der Bezirksregierung Münster wurde das Wasserversorgungskonzept nicht beanstandet.

Herausgeber:

STADT BECKUM

DER BÜRGERMEISTER www.beckum.de

Kontaktdaten:

Stadt Beckum
Weststraße 46
59269 Beckum
02521 29-0
02521 2955-199 (Fax)
stadt@beckum.de

Diese Publikation ist urheberrechtlich geschützt.

Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Herausgebers.

Quellen: Abbildungen, Tabellen und Anlagen – soweit nicht anders angegeben – von der Wasserversorgung Beckum GmbH

Diese Druckschrift wird von der Stadt Beckum herausgegeben.

Die Schrift darf weder von politischen Parteien noch von Wahlbewerberinnen und Wahlbewerbern oder Wahlhelferinnen und Wahlhelfern während eines Wahlkampfes zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für Landtags-, Bundestags- und Kommunalwahlen sowie für die Wahl der Mitglieder des Europäischen Parlaments und für Bürgerentscheide.

Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der politischen Parteien und Wählergruppen sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel.

Untersagt ist gleichfalls die Weitergabe an Dritte zum Zwecke der Wahlwerbung. Eine Verwendung dieser Druckschrift durch Parteien und Wählergruppen oder sie unterstützende Organisationen ausschließlich zur Unterrichtung ihrer eigenen Mitglieder bleibt hiervon unberührt.

Unabhängig davon, wann, auf welchem Weg und in welcher Anzahl diese Schrift der Empfängerin oder dem Empfänger zugegangen ist, darf sie auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl nicht in einer Weise verwendet werden, die als Parteinahme der Stadt Beckum zugunsten einzelner Gruppen verstanden werden könnte.

Einführung

Zur langfristigen Sicherstellung der öffentlichen Wasserversorgung haben die Gemeinden gemäß § 38 Absatz 3 Wassergesetzes für das Land Nordrhein-Westfalen (Landeswassergesetz NRW) ein Konzept über den Stand und die zukünftige Entwicklung der Wasserversorgung in ihrem Gemeindegebiet aufzustellen, das die derzeitige Versorgungssituation und deren Entwicklung und damit verbundene Entscheidungen beinhaltet.

Das Wasserversorgungskonzept muss dabei die wesentlichen Angaben enthalten, die es ermöglichen nachzuvollziehen, dass im Gemeindegebiet die Wasserversorgung jetzt und auch in Zukunft sichergestellt ist.

Die Darstellung soll in einer ausreichenden Vertiefung erfolgen und orientiert sich an der vorgegebenen Gliederung und Beispielliste.

Wassergesetzes für das Land Nordrhein-Westfalen § 38 Sicherstellung der öffentlichen Wasserversorgung (zu § 50 des Wasserhaushaltsgesetzes)

- (1) Die Gemeinden haben in ihrem Gebiet eine dem Gemeinwohl entsprechende öffentliche Wasserversorgung sicherzustellen, das schließt die Vorhaltung von Anlagen zur Sicherstellung einer den örtlichen Verhältnissen angemessenen Löschwasserversorgung nach dem Gesetz über den Brandschutz, die Hilfeleistung und den Katastrophenschutz (BHKG) vom 17. Dezember 2015 (GV. NRW. S. 886) ein. Eine Gemeinde kann ihre Aufgabe nach § 50 Absatz 1 des Wasserhaushaltsgesetzes auf Dritte übertragen oder diese Dritten überlassen, wenn damit eine ordnungsgemäße Wasserversorgung im Gemeindegebiet gewährleistet ist; die Sicherstellungspflicht nach Satz 1 verbleibt bei der Gemeinde. Die zur Wasserversorgung Verpflichteten oder die mit der Erfüllung dieser Pflicht beauftragten Unternehmen wirken auf einen haushälterischen Umgang mit dem Wasser hin. Unberührt bleiben die Regelungen zur Übertragung gemeindlicher Aufgaben nach der Gemeindeordnung für das Land Nordrhein-Westfalen in der Fassung der Bekanntmachung vom 14. Juli 1994 (GV. NRW. S. 666), in der jeweils geltenden Fassung und wasserverbandrechtlicher Regelungen.
- (2) Zur Erfüllung der Pflicht nach Absatz 1 sind Maßnahmen zur qualitativen und quantitativen Sicherung der Trinkwasserversorgung durchzuführen, also Maßnahmen zum Schutz der Gewässer, aus denen die Trinkwasserversorgung stattfindet oder die für die Trinkwassergewinnung vorgehalten werden sollen, um das zur Rohwassergewinnung genutzte Grundwasser oder Oberflächengewässer vorbeugend zu schützen, sowie Maßnahmen zur Einhaltung der Regeln oder des Standes der Technik der Trinkwasserversorgung. Außerdem sind Maßnahmen zur Förderung des sorgsamen Gebrauchs von Trinkwasser zu ergreifen.
- (3) Zur langfristigen Sicherstellung der öffentlichen Wasserversorgung entsprechend ihrer Pflichten nach Absatz 1 und 2 haben die Gemeinden für ihr Gemeindegebiet ein Konzept über den Stand und die zukünftige Entwicklung der Wasserversorgung (Wasserversorgungskonzept) aufzustellen, das die derzeitige Versorgungssituation und deren Entwicklung und damit verbundenen Entscheidungen mit Darstellung der Wassergewinnungsgebiete mit dem zugehörigen Wasserdargebot, der Wassergewinnungs- und aufbereitungsanlagen, der Beschaffenheit des Trinkwassers, der Verteilungsanlagen sowie der Wasserversorgungsgebiete und deren Zuordnung zu den Wassergewinnungsanlagen beinhaltet, insbesondere im Hinblick auf den Klimawandel. Das Konzept ist der zuständigen Behörde erstmalig zum 1. Januar 2018 vorzulegen und alle sechs Jahre fortzuschreiben und erneut vorzulegen. Wird das Wasserversorgungskonzept nach sechs Monaten nicht beanstandet, kann die Gemeinde davon ausgehen, dass mit der Umsetzung der dargestellten Maßnahmen in dem dafür von der Gemeinde vorgesehenen zeitlichen Rahmen die Aufgaben nach Absatz 1 ordnungsgemäß erfüllt werden. Das für Umwelt zuständige Ministerium wird ermächtigt, mit Rechtsverordnung Umfang und Inhalt des Wasserversorgungskonzeptes zu regeln.

Inhalts	sverzeichnis	
1	Stadtgebiet	1
1.1	Stadt Beckum	1
1.2	Bevölkerungsentwicklung mit Prognose	
2	Beschreibung des Wasserversorgungssystems	
2.1	Übersicht	4
2.2	Wasserwerk Vohren	
2.2.1	Gewinnungsgebiete und Gewinnungsanlagen	
2.2.2	AufbereitungsAnlage im Wasserwerk Vohren	
2.2.3	Anzahl und räumliche Verteilung der Kleinanlagen zur Eigenversorgung	
	(Hausbrunnen)	11
2.3	Organisation der Wasserversorgung	
2.4	Rechtliche-/Vertragliche Rahmenbedingungen	
2.4.1	Wasserrecht	
2.4.2	Trinkwasserbezug	
2.4.3	Lieferung an andere Wasserversorgungsunternehmen (WVU)	
2.5	Qualifikationsnachweise/Zertifizierung	
2.6	Absicherung der Versorgung	
2.7	Besonderheiten	
3	Aktuelle Wasserabgabe und Wasserbedarf	
3.1	Wasserabgabe (Historie)	18
3.2	Prognose Wasserbedarf	
3.2.1	Rohwasserförderung	
3.2.2	Trinkwasserbezug	
3.2.3	Trinkwasserabgabe	20
3.2.4	Netzverluste inklusive. Eigenbedarf	21
3.2.5	Versorgte Einwohner im Versorgungsgebiet	
3.2.6	Spezifischer Wasserverbrauch	
3.2.7	Neue Baugebiete, ländliche Erschließung, Hausanschlussverdichtung	22
<i>3.2.8</i>	Sicherheitszuschlag	22
<i>3.2.9</i>	Wasserbedarfsdeckung	22
4	Mengenmäßiges Wasserdargebot für die Bedarfsdeckung (Wasserbilanz)
	sowie mögliche zukünftige Veränderungen	23
4.1	Wasserressourcenbeschreibung	23
4.1.1	Genutzte Ressourcen	23
4.1.2	Ungenutzte Ressourcen	27
4.2	Wasserbilanz	28
4.2.1	Gewinnbares Dargebot	28
4.2.2	Grundwasserneubildung	29
4.2.3	Weitere Wasserechte	29
4.3	Entwicklungsprognose des quantitativen Wasserdargebots unter	
	Berücksichtigung möglicher Auswirkungen des Klimawandels	30

5	Rohwasserüberwachung/Trinkwasseruntersuchung und Beschaffenheit Rohwasser/Trinkwasser	.35
5.1	Überwachungskonzept Rohwasser und Probenahmeplan Trinkwasser	35
5.1.1	Rohwasserüberwachung/Überwachung der Ressourcen	
5.1.2	Trinkwasserüberwachung	
5.2	Beschaffenheit von Rohwasser und Trinkwasser	
5.2.1	Beschaffenheit des Rohwassers aus dem Wasserwerk Vohren	. 36
5.2.2	Beschaffenheit des Trinkwassers im Versorgungsgebiet der Wasserversorgung Beckum GmbH	
<i>5.2.3</i>	Beschaffenheit des Wassers aus Kleinanlagen der Eigenversorgung	
6	Wassertransport	
6.1	Darstellung und Beschreibung des Transportsystems inklusive Pumpwerke und Übergabestationen	41
6.2 6.3	Beschreibung der Instandhaltungsstrategie für die Sanierung und Erneuerung Angabe der Verlustrate	.42
7	Wasserverteilung	
7.1	Plan des Wasserverteilnetzes	43
7.2	Auslegung des Verteilnetzes	43
7.2.1	Besondere Situationen (zum Beispiel Spitzenlastfälle)	. 43
7.2.2	Löschwasserentnahmen	. 44
7.2.3	Fließgeschwindigkeiten und Wasserverweildauer im Netz und identifizierte	
7.3	Problembereiche (zum Beispiel starke Druckschwankungen oder Stagnation) Technische Ausstattung, Materialien, Durchschnittsalter, Dichtigkeit,	. 45
	Schadensfälle, Substanzerhalt	46
7.3.1	Nennweiten- und Werkstoffverteilung, Werkstoffalter, Wasserverlustrate, Rohrschadensrate, durchschnittliche Rehabilitation/Netzerneuerungsrate	16
7.4	Wasserbehälter, Druckerhöhungs-/Druckminderungsanlagen	. 4 0 52
7. 4 7.4.1	Anzahl und Fassungsvermögen der betriebenen Wasserbehälter	
	im Versorgungsgebiet	
7.4.2	Anzahl der Druckzonen	
7.4.3	Anzahl der betriebenen Druckerhöhungsanlagen im Versorgungsgebiet	
7.4.4	Anzahl der betriebenen Druckminderungsanlagen im Versorgungsgebiet	
8	Gefährdungs-/Risikoanalyse – Schlussfolgerungen	.54
8.1	Identifizierung möglicher Gefährdungen	
8.2	Entwicklungsprognose Gefährdungen	
9	Maßnahmen zur langfristigen Sicherung der öffentl. Wasserversorgung	
10	Abbildungsverzeichnis	.61
11	Tabellenverzeichnis	.63
12	Anlagen	.64

1 Stadtgebiet

1.1 Stadt Beckum

Die Stadt Beckum liegt im südlichen Kreis Warendorf und gliedert sich in 4 Stadtteile: Beckum, Neubeckum, Vellern und Roland.

Das Stadtgemeindegebiet umfasst 111,46 Quadratkilometer (km²) Fläche, die Nord-Süd-Ausdehnung beträgt 12,8 Kilometer (km),

die Ost-West-Ausdehnung beträgt 12,3 km.

Es liegt in den Beckumer Bergen im südöstlichen Teil des Münsterlandes. Der Höhenszug erstreckt sich in Form eines nach Westen geöffneten Hufeisens um den Stadtteile Beckum herum.

Die anderen Stadtteile liegen nördlich (siehe **Anlage 1**).

In Beckum entspringen Kollenbach, Lippbach und Siechenbach, die sich zur Werse vereinen und zunächst nach Westen, später Richtung Norden fließt, um bei Münster in die Ems zu münden. Auch alle anderen nach Norden und Osten fließenden Gewässer (Angel und Hellbach) gehören zum Einzugsgebiet der Ems. Lediglich die südlich des Beckum umschließenden Höhenzugs entspringenden Bäche fließen in Richtung Lippe (siehe *Anlage 2*). Innerhalb des Stadtgebiets befinden sich drei Grundwasserkörper (siehe *Anlage 3*).

Die aktuelle Flächennutzung wird vornehmlich durch die Landwirtschaft geprägt. Hinsichtlich der Flächenanteile ergibt sich folgende Einteilung:

Nutzungsart	Flächengröße in Hektar (ha)
Gebäude- und Freifläche	1 240 ha
Betriebsfläche	218 ha
Erholungsfläche	118 ha
Verkehrsfläche	745 ha
Landwirtschaftsfläche	7 294 ha
Waldfläche	1 235 ha
Wasserfläche	186 ha
Fläche anderer Nutzung	110 ha
Gesamt	11 146 ha

Tab. 1 Flächennutzungsanteile im Stadtgebiet Beckum; Quelle: Information und Technik NRW

Beckum ist durch das Kalksteinvorkommen stark durch Abgrabungen der Zementindustrie geprägt. Etwa 80 Prozent der Betriebsfläche wird als Abbaufläche genutzt.

Die langfristig geplante Flächenentwicklung kann dem Flächennutzungsplan der Stadt Beckum sowie dem Regionalplan Münsterland entnommen werden (siehe **Anlagen 4 und 5**).

Im Hinblick auf die Abgrabungen im Stadtgebiet gibt es einen Gesamtrekultivierungsplan aus dem Jahr 2000.

Auf dessen Basis unter Bezugnahme auf die seit Aufstellung stattgefundenen Anpassungen und Entwicklungen ist in den nächsten 10 Jahren mit Abgrabungen von etwa weiteren 50 Hektar auszugehen. Da in Beckum kein Trinkwasser gewonnen wird, hat der Einfluss der Abgrabung auf den Grundwasserstand keine Bedeutung für die Wassergewinnung. Zugleich wird sich der Betrieb der Zementindustrie voraussichtlich nicht ändern, der derzeitige Wasserverbrauch wird folglich weitgehend gleich bleiben.

Auf Basis des Flächennutzungsplans und der derzeitigen Entwicklung der Gewerbegebiete wird in den nächsten 10 Jahren mit einem Zuwachs von 265 000 m² Fläche für Gewerbe- und Industriebetriebe im Stadtteil Beckum gerechnet.

Über den Wasserverbrauch der zukünftig angesiedelten Betriebe im Rahmen ihrer Produktion kann keine belastbare Prognose getroffen werden. Aktuell wird davon ausgegangen, dass sich innerhalb der nächsten 10 Jahre kein weiterer wasserverbrauchsintensiver Betrieb ansiedeln wird.

Es ist jedoch bekannt, dass sich im Stadtteil Roland ein bestehender, verbrauchsintensiver Betrieb innerhalb der nächsten 10 Jahre erweitern wird. Entsprechend einer Konzeptstudie ist mit folgenden Abwassermengen zu kalkulieren:

Stufe 1	150 m³/d zusätzlich
Stufe 2	weitere 150 m³/d zusätzlich
Stufe 3	weitere 200 m³/d zusätzlich
Stufe 4	weitere 500 m³/d zusätzlich
$(m^3/d = Kubikmeter pro T$	ag)

Der entsprechende Trinkwasserverbrauch ist in etwa mit der doppelten Menge anzusetzen. Stufe 1 ist bereits umgesetzt, Stufe 2 wird abhängig von der Bedarfsentwicklung voraussichtlich bis 2027 gebaut. Der Ausbau erfolgt in mehreren Etappen. Es wird daher von einem weitestgehend kontinuierlich ansteigenden Wasserbedarf über die nächsten 10 Jahre ausgegangen, der mit jährlich etwa 30 m³/d beziffert werden kann.

Die zeitliche Einordnung der Stufen 3 und 4 kann aktuell nicht terminiert werden, der Ausbau erfolgt in Abhängigkeit der betrieblichen Nachfrage, voraussichtlich werden sie erst nach 2030 umgesetzt.

Die Bevölkerungszahl der Stadt Beckum (Einwohnerinnen und Einwohner mit Alleiniger Wohnung und Hauptwohnung) beläuft sich auf aktuell 37 472 Personen. Darüber hinaus sind 1 413 Personen mit Nebenwohnung gemeldet (Hauseigene Fortschreibung Stand: 1. August 2018).

Personenzahl nach Stadtteilen – zuzüglich Nebenwohnung):

Beckum	24 683	(1 0536)
Neubeckum	10 614	(333)
Roland	1 089	(20)
Vellern	1 086	(28)

Aktuell befinden sich in Beckum 120 neue Wohnungen in der Vorbereitung beziehungsweise Entwicklung, sowie weitere 50 in Neubeckum, allesamt im Geschosswohnungsbau in Ortslage. Laut der Wohnbedarfsanalyse wird bis 2025 mit einem Bedarf an zusätzlichen 710 Wohneinheiten gerechnet – weitestgehend im Segment des Ein- und Zweifamilienhausbebauung – davon in Beckum 500, in Neubeckum 180 sowie 30 in Roland. Die dafür erforderlichen Flächen liegen entweder in direkter Ortslage oder am Ortsrand. Die ermittelten Werte decken sowohl den Neubedarf als auch den Ersatz- und Nachholbedarf an Wohnungsbau ab. Insgesamt werden durch die zusätzliche Bebauung circa 250 000 m² Fläche in Anspruch genommen.

1.2 Bevölkerungsentwicklung mit Prognose

Die Entwicklung der Bevölkerung in den Städten und Gemeinden im Versorgungsgebiet der Wasserversorgung Beckum GmbH ist in der folgenden Abbildung für den Zeitraum 2016 bis 2027 dargestellt.

Die Bevölkerungszahlen sind unter anderem Berechnungsgrundlage für den Abschnitt 3.2 Prognose Wasserbedarf.

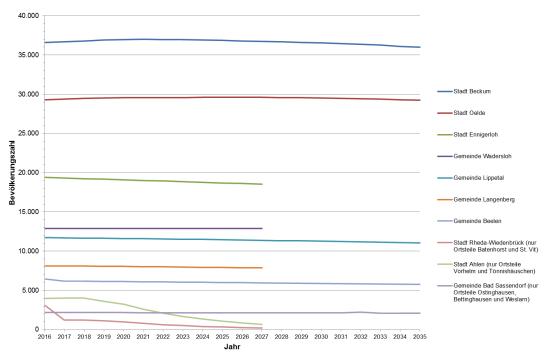


Abb. 1 Bevölkerungsentwicklung in den Städten und Gemeinden im Versorgungsgebiet der Wasserversorgung Beckum GmbH; Datenbasis: Stadt- und Regionalplanung Dr. Jansen GmbH (für die Stadt Beckum), IT.NRW, Düsseldorf – Gemeindemodellrechnung 2014-2040 (für die Städte Oelde und Ennigerloh sowie für die Gemeinden Wadersloh, Lippetal, Langenberg, Beelen und Bad Sassendorf), Zahlen für die Städte Rheda-Wiedenbrück und Ahlen geschätzt

2 Beschreibung des Wasserversorgungssystems

2.1 Übersicht

Die Wasserversorgung Beckum GmbH steht als kommunales regionales Versorgungsunternehmen im Dienste des Bürgerinnen und Bürger.

Gegenstand des Unternehmens ist die Gewinnung, der Bezug, die Verteilung und der Verkauf von Trinkwasser sowie die Erbringung von Dienstleistungen im Bereich der Wasserversorgung mit dem Ziel, die örtliche Wasserwirtschaft zu stärken.

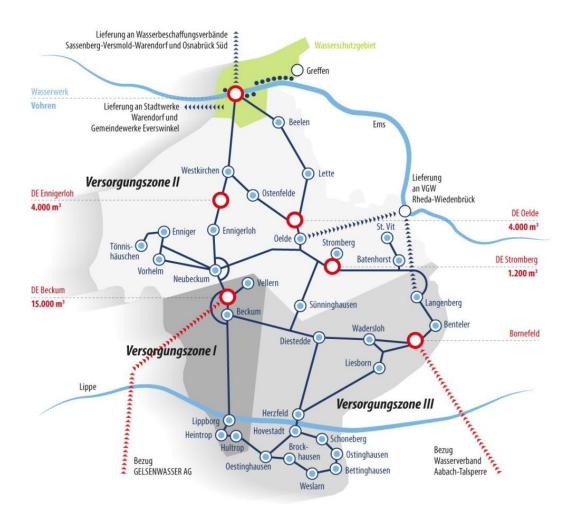


Abb. 2 Versorgungsgebiet der Wasserversorgung Beckum GmbH mit Übergabepunkten für den Wasserbezug und die Wasserabgaben

Versorgt werden die Städte und Gemeinden Beckum, Oelde, Ennigerloh, Wadersloh, Beelen, Lippetal, Langenberg, die Ortsteile Vorhelm und Tönnishäuschen (Stadt Ahlen), St. Vit und Batenhorst (Stadt Rheda-Wiedenbrück), Ostinghausen, Bettinghausen und Weslarn (Gemeinde Bad Sassendorf).

Zusätzlich werden die Stadtwerke Warendorf GmbH, die Wasserbeschaffungsverbände Sassenberg-Versmold-Warendorf und Osnabrück-Süd, die Vereinigte

Gas- und Wasserversorgung Rheda-Wiedenbrück GmbH sowie die Gemeindewerke Everswinkel GmbH mit Wasser beliefert.

Mit rund 40 Mitarbeiterinnen und Mitarbeitern versorgt das Unternehmen inklusive Weiterverteilergeschäft etwa 230 000 Einwohner mit Trinkwasser.

Deckung des Wasserbedarfs

1. Wasserschutzgebiet Vohren/Dackmar

Für das 25,5 km² große Wasserschutzgebiet Vohren/Dackmar (Wasserschutzgebietsverordnung vom 03.04.2014) bestehen bewilligte Wasserrechte bis zum Jahre 2041. Gefördert wird derzeit aus 7 Horizontal- und 5 Vertikalfilterbrunnen von 10 bis 20 m Tiefe.

2. Aabach-Talsperre

Das Unternehmen ist mit 25 Prozent am Wasserverband Aabach-Talsperre beteiligt. Der jährliche Trinkwasserbezug beträgt bis zu 2,3 Mio. m³/a (Kubikmeter pro Jahr) (in Trockenjahren je nach vorhandenem Wasserdargebot).

3. Ruhrwasserwerk Echthausen

Aus dem Ruhrwasserwerk Echthausen der GELSENWASSER AG ist eine vertragliche Bezugsleistung von Trinkwasser in Höhe von bis zu 1 680 m³/h (Kubikmeter pro Stunde) fixiert.

Der derzeitige Wasserbezug beträgt im Durchschnitt (Betrachtungszeitraum 2012 bis 2016) circa. 2,0 Mio. m³/a.

Betriebsanlagen

Grundwasserwerk Vohren

Das Grundwasser aus den Brunnen des Wasserschutzgebiets Vohren/Dackmar wird im Wasserwerk aufbereitet, es erfolgen im Wesentlichen eine Enteisenung und Entmanganung. Im Wasserwerk befindet sich ein Labor (Prüfraum) zur Überwachung der Wirksamkeit der Aufbereitungsanlage, zur Kontrolle der Vorfeldmessstellen im Wasserschutzgebiet sowie zur mikrobiologischen Untersuchung von Wasserproben.

2. Druckerhöhungs- und Speicheranlage Beckum

In zwei oberirdischen Speichern werden bis zu 15 000 m³ Wasser gespeichert. Saisonal beschickt werden die Speicher aus dem Wasserwerk Vohren, der Aabach-Talsperre und dem Ruhrwasserwerk Echthausen (GELSENWASSER AG). Von dieser Station besteht die Möglichkeit, das gesamte Versorgungsnetz zu speisen.

3. Übernahmestation Bornefeld

Die Verteilerstation dient der Übernahme des Wassers aus der Aabach-Talsperre. Sie übernimmt die Versorgung des östlichen und südlichen Raumes. Das Wasserwerk Bornefeld ist stillgelegt und verkauft.

4. Druckerhöhungs- und Speicheranlage Ennigerloh

In zwei oberirdischen Speichern werden bis zu 4 000 m³ Wasser gespeichert und anschließend durch Pumpen weiterverteilt. Sie übernimmt die Versorgung des südlichen und mittleren Versorgungsgebietes.

5. Druckerhöhungs- und Speicheranlage Oelde

In zwei oberirdischen Speichern werden bis zu 4 000 m³ Wasser gespeichert und anschließend durch Pumpen weiterverteilt. Sie übernimmt die Versorgung des südlichen und mittleren Versorgungsgebietes.

6. Druckerhöhungs- und Speicheranlage Stromberg

In einem oberirdischen Behälter wird bis zu 1 200 m³ Wasser gespeichert und anschließend über Pumpen verteilt. Sie übernimmt die Versorgung des östlichen und mittleren Versorgungsgebietes.

7. Transport- und Verteilnetz

Das Wasserwerk Vohren liegt im Norden des Versorgungsgebietes der Wasserversorgung Beckum GmbH. Die Einspeisung in das Versorgungsnetz erfolgt von hier direkt oder über den Reinwasserbehälter am Wasserwerk.

Vom Wasserwerk Vohren gehen 3 Hauptleitungen in Richtung Beelen zur Druckerhöhungs- und Speicheranlage Oelde, Richtung Westkirchen zur Druckerhöhungs- und Speicheranlage Ennigerloh und in Richtung Wasserwerk Warendorf.

Über die letztgenannte Leitung erfolgt die Wasserlieferung an die Stadtwerke Warendorf GmbH, den Wasserbeschaffungsverband Sassenberg-Versmold-Warendorf, den Wasserbeschaffungsverband Osnabrück-Süd und die Gemeindewerke Everswinkel GmbH.

Die Übergabepunkte für die Wasserlieferungen aus dem Versorgungsnetz der Wasserversorgung Beckum GmbH in das Netz der VGW GmbH Rheda-Wiedenbrück befinden sich in Oelde und Langenberg.

Im Westen des Versorgungsgebietes erfolgt in der Druckerhöhungs- und Speicheranlage Beckum die Übernahme des Wassers, das von der GELSENWASSER AG bezogen wird. Die Trinkwasserlieferung erfolgt in erster Linie aus dem Wasserwerk Echthausen im Ruhrtal mit der Möglichkeit der Zulieferung vom Wasserwerk Halingen/Fröndenberg. An der Übernahmestation Bornefeld im Südosten des Versorgungsgebietes erfolgt die

Einspeisung des Wassers, das aus der Aabach-Talsperre (Wasserverband Aabach-Talsperre) bezogen wird. Zwischen der Übernahmestation und dem Trinkwasserspeicher Oelde befindet sich die 4. Druckerhöhungs- und Speicheranlage Stromberg im Stadtteil Oelde-Stromberg.

Das Wasserwerk Vohren fährt überwiegend eine "Bandlieferung". Für die Deckung von Spitzenbedarfe besteht temporär die Möglichkeit des Mehrbezuges durch die GELSENWASSER AG und aus der Aabach-Talsperre (Wasserverband Aabach-Talsperre). Durch die 4 vorhandenen Druckerhöhungs- und Speicheranlagen kann die Wasserversorgung im gesamten Versorgungsgebiet sichergestellt werden.

Die meisten Gemeinden und Städte im Versorgungsgebiet der Wasserversorgung Beckum GmbH sind im Ringverbund an das Zubringer/Hauptleitungsnetz angeschlossen. Hierdurch ist sichergestellt, dass auch bei Ausfall einer Leitung mit Transportcharakter oder einer Versorgungskomponente (Wasserwerk, Druckerhöhungs- und Speicheranlage, Aabach-Talsperre, Bezug GELSENWASSER AG) die Wasserversorgung über alternative Netzschaltungen aufrecht erhalten bleibt.

Das Versorgungsgebiet hat eine Fläche von etwa 1 000 km². Das Rohrleitungsnetz hat eine Länge von circa 1 070 km. Es besteht aus Zubringer/Hauptleitungen und Versorgungsleitungen, die der regionalen und lokalen Versorgung dienen. Mittels Anschlussleitungen werden 34 092 Hausanschlüsse mit Trinkwasser versorgt. Eine Sonderfunktion des Rohrleitungsnetzes ist die Löschwasserversorgung, die sich der Versorgung mit Trinkwasser unterordnet.

	Hausanschlüsse			
	Stand Stand Verände			
	31.12.2017	31.12.2016	%	
Tarifkunden				
Beckum	9.569	9.536	0,3	
Oelde (incl. Pott's)	7.190	7.146	0,6	
Ennigerloh	5.022	4.985	0,7	
Ahlen-Vorhelm	1.177	1.167	0,9	
Beelen	1.314	1.302	0,9	
Warendorf-Vohren	40	40	0,0	
Lippetal	3.395	3.349	1,4	
Bad Sassendorf-Weslarn, - Bettinghausen, -Ostinghausen	688	688	0,0	
Wadersloh	3.023	2.966	1,9	
Langenberg	2.001	1.973	1,4	
Rheda-Wiedenbrück-Batenhorst, -St. Vit	673	669	0,6	
Tarifkunden insgesamt	34.092	33.821	0,8	

Tab. 2 Anzahl der Hausanschlüsse im Versorgungsgebiet der Wasserversorgung Beckum GmbH nach Stadt- und Ortsteilen

8. Betriebslager und Verwaltung in Beckum

Die technischen und kaufmännischen Bereiche haben ihren Sitz in Beckum.

Der technische Bereich ist mit einem Lager für Rohre, Rohrnetz- und Hausanschlussmaterial ausgestattet. Die Rohrnetzkolonne und der Rufbereitschaftsdienst für Unterhaltungsarbeiten im Rohrnetz- und Druckerhöhungsbereich, zur Rohrbruchbehebung sowie für Ortsnetzerweiterungen und Neuanschlüsse werden von Beckum aus gesteuert.

Außerdem befindet sich hier ein weiterer Prüfraum zur mikrobiologischen Untersuchung von Trinkwasserproben.

2.2 Wasserwerk Vohren

2.2.1 Gewinnungsgebiete und Gewinnungsanlagen

Die Brunnen in den Wassergewinnungsgebieten Vohren und Dackmar liegen entlang der Ems zwischen der Stadt Warendorf im Westen und dem Ortsteil Greffen der Stadt Harsewinkel im Osten (siehe *Anlage 6*).

Im normalen Wasserwerksbetrieb beträgt die Auslastung der Wassergewinnungsanlage >90 Prozent. Dies bedeutet, dass die Grundwasserentnahme im 24-stündigen Dauerbetrieb im Wassergewinnungsgebiet Vohren durch 5 Horizontalfilterbrunnen sowie im Wassergewinnungsgebiet Dackmar durch 2 Horizontalfilterbrunnen und einen Großvertikalfilterbrunnen erfolgt. Bedarfsabhängig können 4 konventionelle Vertikalfilterbrunnen zugeschaltet werden.

Im Gewinnungsgebiet Vohren befinden sich südlich der Ems 4 Horizontalfilterbrunnen und nördlich der Ems einer.

Im Gewinnungsgebiet Dackmar liegen die Brunnen allesamt nördlich der Ems. Hier erfolgt die Wasserförderung durch 2 Horizontalfilterbrunnen (HFB "Dackmar I und II") sowie 5 Vertikalfilterbrunnen (VB "Dackmar 1, 3, 4, 6 und 9").

Die Horizontalfilterbrunnen haben einen zentralen wasserdichten Brunnenschacht aus Schleuderbetonrohren mit einem Innendurchmesser von etwa 2 m lichter Weite. Die Schachttiefe beziehungsweise die Tiefenlage der Horizontalfilterstrange richtet sich nach der Tiefenlage der für die Wassergewinnung genutzten Schichten. Die Schachttiefe beträgt im Wassergewinnungsgebiet Vohren rund 11 m und im Wassergewinnungsgebiet Dackmar 19 m.

Den Brunnenabschluss bilden quadratische Brunnenstuben von 3,5 m x 3,5 m Grundfläche. Da die Brunnen im Wassergewinnungsgebiet Vohren im Überschwemmungsgebiet der Ems liegen, sind die Brunnenschächte hier zudem über HHW (höchster bisher gemessener Hochwasserstand) hinausgezogen und die Brunnenstuben stehen auf einem angeböschten Hügel.

Das über die Horizontalfilterstränge zuströmende Rohwasser wird aus den Brunnenschächten der Horizontalfilterbrunnen jeweils mittels einer Unterwasserpumpe in die Rohwassersammelleitung gefördert. Die Brunnen sind jeweils mit einer Reservepumpe bestückt, um den Dauerbetrieb sicherstellen zu können.

Im Gewinnungsgebiet Dackmar wird die Förderung aus den Horizontalfilterbrunnen durch die Entnahme aus 5 Vertikalfilterbrunnen ergänzt.

Die konventionellen Vertikalfilterbrunnen (Gewinnungsgebiet Dackmar) sind als Kiesschüttungsbrunnen ausgeführt und erreichen Endteufen von 18 bis 24 m unter GOK. Die Bohrdurchmesser betragen 1 000-1 500 mm.

Beim Großvertikalfilterbrunnen VB "Dackmar 9" wurden um eine Zentralbohrung 6 weitere sich leicht überlappende Bohrungen mit jeweils 1 200 mm abgeteuft. Der Ausbau in der Zentralbohrung erfolgte in Nennweite (DN) 600.

Die Grundwasserförderung in den Vertikalfilterbrunnen erfolgt mittels Unterwasserpumpen.

Der Wasserandrang der Horizontalfilterbrunnen ist im Bereich des Wassergewinnungsgebietes Vohren aufgrund einer lithologisch ungünstigeren Ausbildung des Grundwasserleiters in Verbindung mit einer vergleichsweise geringen wassererfüllten Mächtigkeit auf etwa 70 bis 80 m³/h beschränkt.

Im Bereich des Wassergewinnungsgebietes Dackmar ist die Ergiebigkeit der Brunnen aufgrund der günstigen lithologischen Ausbildung sowie der größeren wassererfüllten Mächtigkeit des Grundwasserleiters deutlich höher. Zur Schonung der Brunnen wurde hier die Fördermenge der Horizontalfilterbrunnen durch die Auslegung der Pumpenleistung auf rd. 100 m³/h beziehungsweise beim Großvertikalfilterbrunnen VB "Dackmar 9" auf 70 m³/h begrenzt. Die Leistung der weiteren Vertikalfilterbrunnen liegt bei rund 50 m³/h.

2.2.2 Aufbereitungsanlage im Wasserwerk Vohren

Die technische Aufbereitungskapazität des Wasserwerkes beträgt 750 m³/Std. beziehungsweise 18 000 m³/Tag. In der Aufbereitungsanlage (siehe *Anlage 7*) werden sämtliche Filter (4 geschlossene Druckfilter und 8 offene Filter der Nachfiltration) – mit Ausnahme der Zeiten des Filterrückspülens einzelner Filter – im 24-Stundenbetrieb gefahren.

Das in den Brunnen geförderte Rohwasser wird über eine Rohwassersammelleitung, an die alle Brunnen in den Wassergewinnungsgebieten Vohren und Dackmar angeschlossen sind, zum Wasserwerk Vohren transportiert. Das Rohwasser wird über ein Fallrohr dem Rohwassersammelbrunnen (Rohwasserbehälter) zugeleitet. Der im Fallrohr aufgebaute Unterdruck wird zur Ansaugung von Außenluft genutzt. Das zwangsbelüftete Wasser mischt sich im Rohwassersammelbrunnen. Das so für die weitere Aufbereitung vorbereitete Rohwasser wird mittels eines redundant ausgelegten Rohwasserpumpensystems auf 4 geschlossene Druckfilter (Monobettfilter mit Düsenboden und Basalt-Füllung) geleitet. Hierbei erfolgen die Hauptenteisenung und bereits der größte Teil der Entmanganung. Nach der Aufbereitung in der ersten Filterstufe fließt das Wasser der physikalischen Entsäuerung zu (Flachbettbelüfter mit Seitenkanalverdichtern zur Nachbelüftung und Entgasung). Überschüssige Kohlensäure und vorhandener Schwefelwasserstoff werden hier durch Zuführung von Luftsauerstoff im Gegenstromverfahren ausgetrieben. Gleichzeitig wird eine Sauerstoffahreicherung bis zur Sättigung erzielt, sodass in der zweiten Filterstufe über 8 offene Monobettfilter eine optimale Restenteisenung und Entmanganung erfolgen kann, ehe das Trinkwasser über die Zwischenspeicherung im Reinwasserbehälter durch ein redundant ausgelegtes Reinwasserpumpensystem bedarfsweise in das Versorgungsnetz eingespeist wird.

In den Filtern der Aufbereitungsanlage reichert sich eisen- und manganhaltiger Schlamm in Form von schwerlöslichen Hydroxiden an. Zum Reinigen der Filter werden diese alle 3 (1. Filterstufe) beziehungsweise alle 14 Tage (2. Filterstufe) im Gegenstrom abwechselnd mit einem Reinwasser-Luft-Gemisch gespült. Die Filterrückspülwässer werden einer Flockung unterzogen. Nach dem Absetzen der Feststoffe in den Absetzbecken wird die Klarphase in den Axtbach abgeschlagen.

Der abgesetzte Schlamm wird mechanisch geräumt und in Trockenbecken gepumpt. Nach der Trocknung wird der Schlamm gemäß den jeweils gültigen Vorschriften verwertet oder entsorgt.

2.2.3 Anzahl und räumliche Verteilung der Kleinanlagen zur Eigenversorgung (Hausbrunnen)

Für das Stadtgebiet von Beckum sind derzeit 369 dezentrale kleine Wasserwerke und Kleinanlagen zur Eigenversorgung beim Gesundheitsamt des Kreises Warendorf registriert (siehe **Anlage 8**). Der Großteil dieser Anlagen liegt im Außenbereich mit einem Schwerpunkt südöstlich des Stadtteils Beckum.

Ein Lageplan zur räumlichen Verteilung der Kleinanlagen liegt der Stadt Beckum vor, wird aber aus Gründen des Datenschutzes an dieser Stelle nicht veröffentlicht. Im Rahmen der nächsten turnusgemäßen Aktualisierung des Wasserversorgungskonzeptes 2023 wird eine schematische Darstellung beigefügt.

Zu den privaten Brauchwasserentnahmen liegen keine Informationen vor.

2.3 Organisation der Wasserversorgung

Im ehemaligen Kreis Beckum sind unter den Aspekten der Qualität und Quantität keine ausreichenden Wasservorkommen vorhanden, die für eine öffentliche Trinkwasserversorgung ausreichen. In Ermangelung geeigneter ortsnaher Standorte sah die Planung deshalb eine zentrale öffentliche Wasserversorgung für den Kreis vor (Kreiswasserwerk Beckum). In der Bauernschaft Vohren in Emsnähe konnte ein geeigneter Standort erschlossen werden. Durch eine landespolizeiliche Verfügung vom 03.02.1909 wurde die Errichtung eines Wasserwerkes genehmigt. Bereits nach eineinhalb Jahren Planungs- und Bauzeit, einschließlich der Errichtung der notwendigen Infrastruktur zur Wasserweiterverteilung, konnte das Wasserwerk Vohren im Juni 1910 in Betrieb genommen werden.

Bis 1913 erfolgte dann der weitere Ausbau.

Im Jahre 1954 kam es dann, wiederum unter der Federführung des Kreises Beckum, zur Gründung eines eigenen Wasserwerkes (Wasserwerk Lippe-Glenne) für den südlichen Teil des Kreises.

Die gute Zusammenarbeit zwischen beiden Wasserwerken, die gleichgerichtete Interessenlage wie auch die Diskussion über die kommunale Neugliederung führten im Mai 1972 zum Zusammenschluss beider Wasserwerke zur Wasserversorgung Beckum GmbH.

Abb. 3 Entwicklung der Wasserversorgung Beckum

Die Wasserversorgung Beckum ist heute ein öffentlicher Trinkwasserversorger, privatrechtlich organisiert als GmbH.

Die 11 Gesellschafter sind teils rein kommunal, teils kommunal geprägt:

•	Kreis Warendorf	Anteil: 8 Prozent
•	Stadt Beckum	Anteil: 34 Prozent
•	Wirtschafts- und Bäderbetrieb Oelde GmbH	Anteil: 18 Prozent
•	Stadt Ennigerloh	Anteil: 12 Prozent
•	Gemeinde Wadersloh	Anteil: 8 Prozent
•	Gemeinde Lippetal	Anteil: 8 Prozent
•	Gemeinde Langenberg	Anteil: 5 Prozent
•	Gemeinde Beelen	Anteil: 2 Prozent
•	Flora Westfalica GmbH	Anteil: 1 Prozent
•	Stadtwerke Ahlen GmbH	Anteil: 3 Prozent
•	Gemeinde Bad Sassendorf	Anteil: 2 Prozent

Die Organisationsstruktur des Unternehmens ist in dem nachfolgenden Organigramm dargestellt.

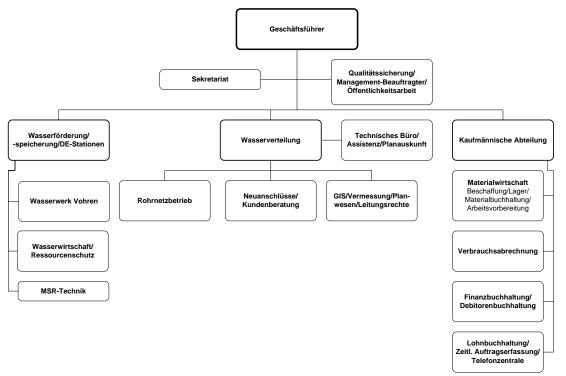


Abb. 4 Organisationsstruktur bei der Wasserversorgung Beckum GmbH

Die Wasserversorgung Beckum GmbH produziert und bezieht Trinkwasser. Sie verteilt ihr Trinkwasser an Endkunden und an Weiterverteiler.

In ihrem Trinkwasserversorgungsgebiet fungiert sie als Netzbetreiber und Lieferant. Hierfür hat sie mit folgenden Kommunen Konzessionsverträge abgeschlossen:

- Stadt Beckum
- Stadt Oelde
- Gemeinde Wadersloh
- Gemeinde Lippetal
- Gemeinde Langenberg
- Gemeinde Beelen
- Stadt Ennigerloh
- Stadt Ahlen
- Gemeinde Bad Sassendorf
- Stadt Rheda-Wiedenbrück
- Stadt Warendorf

2.4 Rechtliche-/Vertragliche Rahmenbedingungen

2.4.1 Wasserrecht

Mit Datum vom 28.11.2012 (AZ: 54.18.01-394/2010.0010) erteilte die Bezirksregierung Münster der Wasserversorgung Beckum GmbH gemäß §§ 8, 10 WHG (Wasserhaushaltsgesetz) das bis zum 31.12.2041 befristete Recht im Wassergedefinierten winnungsgebiet Vohren auf Grundstücken 5 Horizontalfilterbrunnen Grundwasser in einer Menge von bis zu 400 m³/h, 9 600 m³/d und 2 920 000 m³/a sowie im Wassergewinnungsgebiet Dackmar auf definierten Grundstücken aus 2 Horizontalbrunnen und aus 9 Vertikalbrunnen Grundwasser in einer Menge von bis zu 500 m³/h, 12 000 m³/d und 3 000 000 m³/a zutage zu fördern und zur Versorgung der angeschlossenen Abnehmer mit Trink-, Brauch- und Betriebswasser abzugeben, wobei die Summe der Rohwasserförderung aus beiden Gewinnungsgebieten der Wasserversorgung Beckum GmbH 750 m³/h, 18 000 m³/d nicht überschreiten darf.

Gewinnungsge- biet	bewilligte Entnahme	Bewilligungsbescheid der BezReg. Münster	gültig bis
Vohren	2,92 Mio. m ³ /a 9 600 m ³ /d 400 m ³ /h	28.11.2011	31.12.2041
Dackmar	3,00 Mio. m ³ /a 12 000 m ³ /d 500 m ³ /h		
Summe	5,92 Mio. m ³ /a 18 000 m ³ /d 750 m ³ /h		

Tab. 3 Bewilligtes Recht auf Grundwasserförderung für das Wasserwerk Vohren

Die Wassergewinnungsanlage besteht aus den beiden Wassergewinnungsgebieten Vohren und Dackmar und dem Wasserwerk Vohren, in dem das geförderte Rohwasser aus den Gewinnungsgebieten aufbereitet wird.

Das Wasserwerk Vohren wird von der Wasserversorgung Beckum GmbH beziehungsweise von deren Rechtsvorgängern für die öffentliche Trinkwasserversorgung bereits seit 1910 betrieben.

2.4.2 Trinkwasserbezug

Wasserwerk Vohren

Die Trinkwasserabgabe des Wasserwerkes Vohren in das Verteilungsnetz der Wasserversorgung Beckum ergibt sich aus der geförderten Rohwassermenge abzüglich des Eigenbedarfs. In das Versorgungsnetz werden bis zu 5 880 000 m³/a eingespeist.

Wasserverband Aabach-Talsperre

Die Wasserversorgung Beckum ist an dem Wasserverband Aabach-Talsperre beteiligt und kann jährlich bis zu 2,28 Mio. m³ beziehen (Übernahmestation Bornefeld).

In Trockenjahren kann die Bezugsmenge reduziert werden.

GELSENWASSER AG

Eine weitere Absicherung/Deckung des Trinkwasserbedarfs erfolgt über den Bezug von der GELSENWASSER AG aus dem Wasserwerk Echthausen an der Ruhr.

Die minimale Abnahme von der GELSENWASSER AG orientiert sich an der Abgabemenge an die Vereinigte Gas- und Wasserversorgung (VGW) GmbH Rheda-Wiedenbrück. Vorgehalten wird eine maximale Stundenleistung in Höhe von 1 680 m³/h.

1. Wasserwerk Vohren						
	Leistung:	Menge:				
	750 m³/h	5 851 000 m ³ /a				
2. Wasserverband Aak	ach-Talsperr	e				
	Leistung:	Menge:	Bemerkungen:			
	560 m³/h	2 280 000 m ³ /a	in Trockenjahren wer-			
			den Kontingente redu-			
			ziert			
3. GELSENWASSER AG	i					
Vertrag: 30.05.2007,	Leistung:		Bemerkungen:			
Laufzeit: 01.01.2008-	1 300 m ³ /h		begrenzt durch Leis-			
31.12.2030,	+ 180 m ³ /h		tungskapazität ≅ Ab-			
(Verlängerung um	+ 200 m ³ /h		nahme min. VGW			
weitere 5 Jahre, wenn	=					
nicht 2 Jahre vor Ab-	1 680 m ³ /h					
lauf gekündigt wird)						
Summe	2 990 m ³ /h					

Tab. 4 Abgabemengen des Wasserwerks Vohren und Wasserbezug

2.4.3 Lieferung an andere Wasserversorgungsunternehmen (WVU)

Die Trinkwasserabgabe an andere WVUs sowie Wiederverkäufer ist vertraglich in den Wasserlieferungsverträgen an Weiterverteiler geregelt. Die dort vereinbarten Liefermengen variieren. In den kommenden Jahren prognostiziert die Wasserversorgung Beckum GmbH im Cluster "Stundenleistung" die Realisierung der individuellen Maximalwerte. Die vertraglich geregelte Trinkwasserabgabe beträgt in Summe 6,36 Mio. m³/a.

1. Stadtwerke Warendorf GmbH		
Vertrag: 18.12.1996,	Leistung:	Menge:
Laufzeit: 01.01.1997-31.12.2017,	85 m ³ /h	500 000 m³/a
(Verlängerung um weitere 5 Jahre,	100 m ³ /h	
wenn nicht 1 Jahr vor Ablauf ge-	Reserve für Ausfall	
kündigt wird)	Wasserwerk Warendorf	
2. Wasserbeschaffungsverband Sas	senberg-Versmold-Ware	ndorf
Vertrag: 04.12.1996,	Leistung:	Menge:
Laufzeit: 01.01.1997-31.12.2017,	115 m ³ /h	700 000 m³/a
(Verlängerung um weitere 5 Jahre,	Zählerschacht Wasser-	
wenn nicht 1 Jahr vor Ablauf ge-	werk Warendorf	+ 500 000 m³/a
kündigt wird)	+ 110 m ³ /h	
	Zählerschacht Sassen-	
	berg	
3. Wasserbeschaffungsverband Osr	nabrück-Süd	
Laufzeit: 16.05.1995-31.12.2032,	Leistung:	Menge:
(Verlängerung um weitere 5 Jahre,	280 m ³ /h	1 700 000 m ³ /a
wenn nicht 2 Jahre vor Ablauf ge-		
kündigt wird)		
4. Gemeindewerke Everswinkel Gm	bH	
Laufzeit: 03.08.2001-31.12.2022,	Leistung:	Menge:
(Verlängerung um weitere 5 Jahre,	100 m ³ /h	500 000 m³/a
wenn nicht 2 Jahre vor Ablauf ge-		
kündigt wird)		
5. VGW GmbH Rheda-Wiedenbrück	<	
Laufzeit: 30.05.2007-31.12.2030,	Leistung:	Menge:
(Verlängerung um weitere 5 Jahre,	180 m³/h	2 460 000 m³/a
wenn nicht 5 Jahre vor Ablauf ge-	Übergabestelle Baten-	
kündigt wird)	horst	
	+ 200 m ³ /h	
	Übergabestelle Oelde	
Summe Weiterverteiler	1 170 m ³ /h	6 360 000 m³/a

Tab. 5 Wasserlieferverträge

2.5 Qualifikationsnachweise/Zertifizierung

Bei der Wasserversorgung Beckum GmbH wurde im Jahr 1999 ein integriertes Management-System für Qualität, Umwelt und Arbeitsschutz eingeführt und durch den DVGW (Deutscher Verein des Gas- und Wasserfachs e. V.) nach DIN EN ISO 9001:2015 zertifiziert. Das Zertifikat hat eine Gültigkeit bis zum 16.04.2018.

Im Jahr 2013 wurde das Management-System um den Bereich Energie erweitert und vom DVGW nach DIN EN ISO 50001:2011 zertifiziert. Das Zertifikat hat eine Gültigkeit bis zum 03.07.2020.

Weiterhin erfüllt die Wasserversorgung Beckum GmbH die Anforderungen gemäß dem DVGW-Arbeitsblatt W 1000:2016 "Anforderungen an die Qualifikation und die Organisation von Trinkwasserversorgern" zum geprüften technischen Sicherheitsmanagement (TSM). Dieses Zertifikat hat eine Gültigkeit bis zum April 2022.

Zur nachhaltigen Sicherstellung einer hohen Versorgungssicherheit und Versorgungsqualität und zur Verbesserung der betrieblichen Leistungserbringung in technischer und wirtschaftlicher Hinsicht nach dem Prinzip des "Lernen vom Besten" nimmt die Wasserversorgung Beckum GmbH regelmäßig an einem freiwilligen Leistungsvergleich von Wasserversorgungsunternehmen in NRW (Benchmarking) teil.

2.6 Absicherung der Versorgung

Der Wasserbedarf kann komplett aus den Trinkwasserbezügen vom Wasserwerk Vohren, von der Aabach-Talsperre und der GELSENWASSER AG bedient werden.

Bedarfsspitzen sind in der Regel nur in den Sommermonaten an einzelnen Tagen abzudecken. Das dann benötigte zusätzliche Trinkwasser kann von der GELSENWASSER AG an der Druckerhöhungs- und Speicheranlage in Beckum bezogen werden. Das Wasserwerk Vohren fährt kontinuierlich im Grundlastbetrieb.

Spitzenverbräuche werden zudem abgefahren durch die Speicherbehälter. Im Versorgungssystem sind 4 Hochbehälteranlagen integriert. Das Speichervolumen insgesamt beträgt 24 200 m³.

2.7 Besonderheiten

Besonderheiten liegen nicht vor.

3 Aktuelle Wasserabgabe und Wasserbedarf

3.1 Wasserabgabe (Historie)

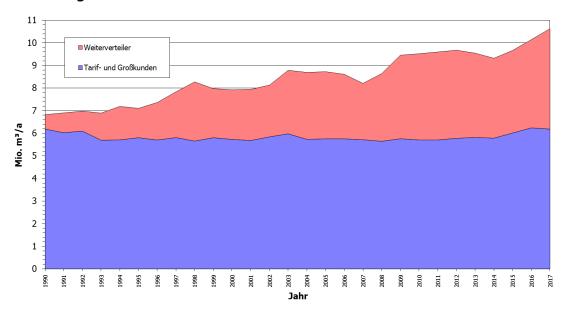


Abb. 5 Trinkwasserabgabe im Zeitraum 1990-2017

		2012	2013	2014	2015	2016	2017
höchste Tagesabgabe	m³	35 266	39 392	32 964	37 578	42 152	43 094
niedrigste Tagesabgabe	m³	19 186	19 909	20 160	18 369	18 736	21 466
mittlere Tagesabgabe	m³	27 402	27 561	26 575	28 507	27 408	30 089
höchste Stundenabgabe	m³	2 043	2 387	2 100	2 382	2 603	2 589

Tab. 6 Tages-/Stundenabgaben für den Zeitraum 2012-2017

3.2 Prognose Wasserbedarf

Die Wasserbedarfsprognose für den Zeitraum 2015 bis 2027 ist in **Anlage 9** dargestellt. Die Abschnitte 3.2.1 bis 3.2.9 geben Erläuterungen zu der Prognose.

3.2.1 Rohwasserförderung

3.2.1.1 Rohwasserförderung Wasserwerk Vohren

Die Wasserversorgung Beckum GmbH verfügt derzeit über ein Wasserrecht (Vohren/Dackmar) zur Sicherstellung der Versorgung der angeschlossenen Abnehmer mit Trinkwasser (siehe Abschnitt 2.4.1).

Die maximale Fördermenge aus den zwei Gewinnungsgebieten wurde im Jahr 2016 mit 6,03 Mio. m³ (5,92 Mio. m³ gemäß Wasserrecht zuzüglich Duldung einer zusätzlichen Fördermenge in Höhe von 0,11 Mio. m³) erreicht.

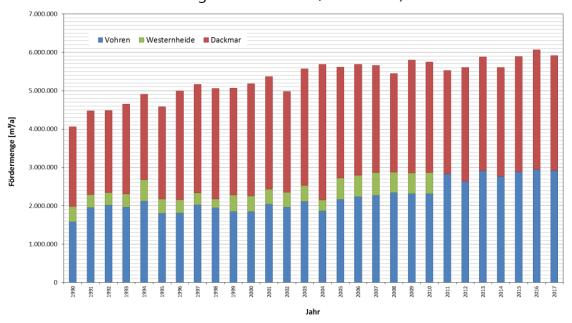


Abb. 6 Entwicklung der Rohwasserförderung von 1990-2017

Vor dem Hintergrund der demographischen Entwicklung mit einer stagnierenden bzw. leicht rückläufigen Bevölkerungszahl im Versorgungsgebiet der Wasserversorgung Beckum GmbH, jedoch noch moderat steigenden Abgabemengen im Bereich der Lieferverträge, besteht aktuell der höchste Bedarf.

3.2.1.2 Eigenbedarf Wasserwerk

Der Eigenbedarf des Wasserwerkes Vohren lag in den vergangenen 10 Jahren im Bereich 55 586 m³ bis 86 431 m³. Das Wasser aus den Wassergewinnungsgebieten Vohren und Dackmar weist hohe Eisen- und Manganwerte auf. Die Filter müssen deshalb oft gespült werden. Die Schwankungen im Spülwasserverbrauch sind begründet durch Austausch des Filtermaterials in der 1. und 3. Aufbereitungsstufe.

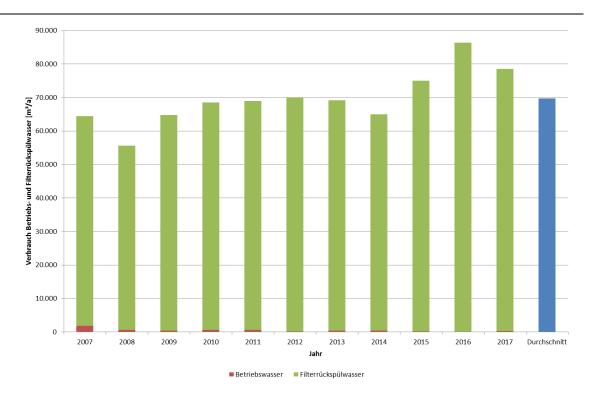


Abb. 7 Entwicklung des Trinkwassereigenbedarfs im Wasserwerk Vohren von 2007-2017

Ein weiterer Anteil des Rohwassers wird für die jährliche Spülung und Reinigung der Rohwasserleitung von den Brunnen bis zum Wasserwerk verwendet und einem Vorfluter zugeführt.

Anzusetzen ist der Durchschnittswert der letzten 10 Jahre, der rund 69 000 m³/a beträgt.

3.2.2 Trinkwasserbezug

Der Trinkwasserbezug ist in Abschnitt 2.4.2 beschrieben.

3.2.3 Trinkwasserabgabe

3.2.3.1 Lieferung an andere Wasserversorgungsunternehmen

Die Trinkwasserabgabe an andere Wasserversorgungsunternehmen ist in Abschnitt 2.4.3 beschrieben.

3.2.3.2 Städte/Gemeinden (Tarifkunden)

Bei der Trinkwasserabgabe an die Städte und Gemeinden wurden für die Jahre 2015 und 2017 die tatsächlichen Abgabemengen als Basis für die Prognose für die Jahre 2018 bis 2027 genutzt. Die prognostizierten Abgabemengen ergeben sich aus den Veränderungen in Bevölkerungsprognosen der Städte und Gemeinden.

Die Tabelle (**Anlage 9**) zeigt, dass für die Wasserversorgung Beckum GmbH der höchste Bedarf im Tarifkundenbereich im Jahr 2016 mit 6,2 Mio. m³ zu verzeichnen war.

3.2.4 Netzverluste inklusive. Eigenbedarf

Die Netzverluste sind im Wesentlichen auf Rohrbrüche im Versorgungsnetz und Rohrnetzspülungen zurückzuführen. Die Netzverluste lagen in den Jahren 2007 bis 2017 im Bereich 0,03 m³/(km x h) (Kubikmeter pro Kilometer Rohrleitung und Stunde) bis 0,06 m³/(km x h) [Durchschnitt: 0,04 m³/(km x h)] und werden nach dem DVGW-Arbeitsblatt W 392:2017 "Rohrnetzinspektion und Wasserverluste – Maßnahmen, Verfahren und Bewertungen" als geringe Verluste eingestuft, was auf einen guten Rohrnetzzustand schließen lässt.

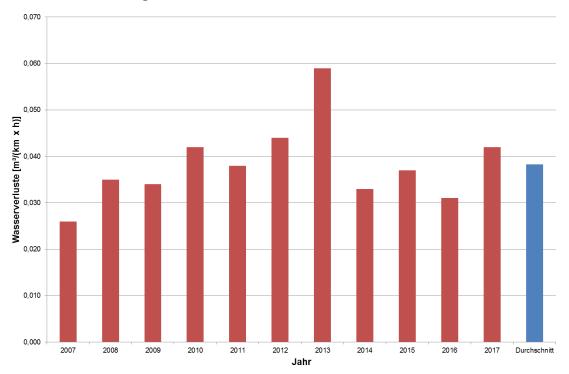


Abb. 8 Entwicklung der Wasserverluste der Wasserversorgung Beckum GmbH von 2007-2017

Es wird davon ausgegangen, dass dieser gute Zustand auch in Zukunft gehalten werden kann. Da die spezifischen realen Wasserverluste bereits im günstigsten Bereich liegen, sind hier für den Gesamtbedarf keine Einsparpotentiale vorhanden.

3.2.5 Versorgte Einwohner im Versorgungsgebiet

Für die Bevölkerungsentwicklung wurden die Zahlen der Städte und Gemeinden zugrunde gelegt.

Gemäß den bereitgestellten aktuellen Zahlen zur Bevölkerungsentwicklung ist im Jahr 2016 die höchste Einwohnerzahl im Versorgungsgebiet der Wasserversorgung Beckum GmbH zu verzeichnen. Für die Zukunft wird ein leichter Bevölkerungsrückgang prognostiziert.

Insgesamt wird die Anzahl der versorgten Einwohner jährlich um circa 0,1 Prozent zurückgehen.

3.2.6 Spezifischer Wasserverbrauch

Der nettospezifische Pro-Kopf-Verbrauch errechnet sich aus der Trinkwasserabgabe an die Tarifkunden im Versorgungsgebiet der Wasserversorgung Beckum GmbH und der versorgten Einwohner.

Für die Berechnung des zukünftigen Wasserbedarfs wird der spezifische Pro-Kopf-Verbrauch der Jahre 2015/16 von 118 l pro Einwohner und Tag angesetzt.

3.2.7 Neue Baugebiete, ländliche Erschließung, Hausanschlussverdichtung

Für die Erschließung ländlicher Bereiche sowie Verdichtung der Hausanschlüsse werden jährlich 33 000-39 000 m³ angesetzt. Das entspricht zusätzlich 220-260 Hausanschlüsse pro Jahr mit jeweils 150 m³ Trinkwasserverbrauch.

3.2.8 Sicherheitszuschlag

Von der Bezirksregierung Münster werden Sicherheitszuschläge von 5 bis 10 Prozent auf die Abgabemengen an die Tarif- und Sonderabnehmer anerkannt. In dem Prognosezeitraum 2018 bis 2027 wird mit dem geringsten Sicherheitszuschlag von 5 Prozent gerechnet.

3.2.9 Wasserbedarfsdeckung

Der höchste prognostizierte Wasserbedarf im Zeitraum 2018 bis 2027 wird gemäß den Berechnungen in der **Anlage 9** im Jahr 2026 erreicht sein. Er errechnet sich wie folgt:

Wasserbedarf	Menge	
Lieferung an Städte/Gemeinden (Tarifkunden)	6 183 680 m ³	
+ Netzverluste inklusive. Eigenbedarf	315 000 m ³	
+ neue Baugebiete, ländliche Erschließung, Hausanschlussverdichtung	33 000 m³	
= Zwischensumme (Tarifkunden, Netzverluste,)	6 531 680 m ³	
+ 5 Prozent Sicherheitszuschlag	326 584 m³	
+ Lieferung an andere Wasserversorgungsunternehmen	5 360 000 m ³	
= Gesamtbedarf in 2026	12 218 264 m ³	

Tab. 7 Berechnung des zukünftigen Bedarfs im Zeitraum 2018-2027

4 Mengenmäßiges Wasserdargebot für die Bedarfsdeckung (Wasserbilanz) sowie mögliche zukünftige Veränderungen

4.1 Wasserressourcenbeschreibung

4.1.1 Genutzte Ressourcen

4.1.1.1 Einzugsgebiet

Das Einzugsgebiet wird im Norden durch eine Grundwasserscheide zwischen Ems und Hessel begrenzt, die im Osten von der Greffener Mark nach Westen südlich der Ortslage von Sassenberg verläuft. Das Wasser strömt von der Grundwasserscheide nach Süden und Südosten den Brunnen des Wassergewinnungsgebietes Dackmar zu. Nördlich der Scheide fließt das Wasser der Hessel zu und geht somit der Wassergewinnung verloren.

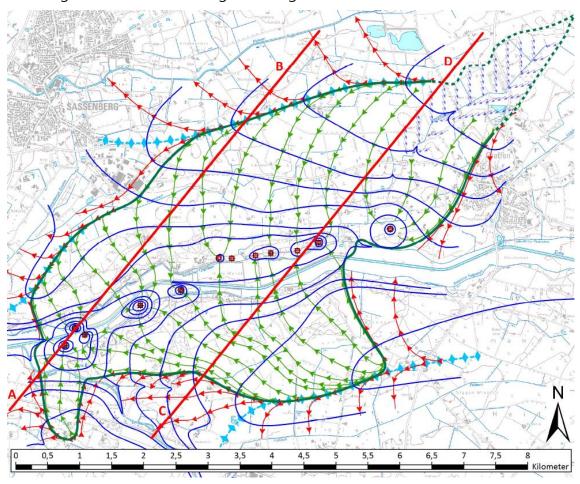


Abb. 9 Grundwasserfließrichtung mit dem unterirdischen Einzugsgebiet der Brunnen (dunkelgrüne Umrandung) und dem oberirdischen Einzugsgebiet des Teufelsbaches (dunkelgrün gestrichelte Linie)

Bei hohen Grundwasserständen wird hier jedoch durch einen namenlosen Graben Grundwasser südlich der Grenze aufgenommen und nach Norden zur Hessel abgeführt, sodass sich hier zeitlich lokal bei hohen Grundwasserständen das Einzugsgebiet entsprechend verkleinert.

Die östliche Einzugsgebietsgrenze des Wassergewinnungsgebietes Dackmar wird im Norden durch das hydraulisch wirksame Einzugsgebiet des Loddenbachs und der in ihn mündenden Gräben bedingt. Bis zur ausgewiesenen Einzugsgebietsgrenze fließt das Wasser dem Brunnen VB (Vertikalbrunnen) "Dackmar 9" zu, östlich davon strömt es zum Loddenbach hin ab. Richtung Ems begrenzt schließlich die Entnahmebreite und die untere Kulmination des Brunnens VB "Dackmar 9" das Einzugsgebiet. Östlich und südlich der dargestellten Einzugsgebietsgrenze strömt das Wasser in den nördlichen Talgraben bzw. in die Ems hin ab.

Südlich der Ems wird abhängig von der Aufstausituation am Stau Neue Mühle das Einzugsgebiet begrenzt. Bei hohem Aufstau und niedrigen Grundwasserständen infiltriert hier Wasser aus der Ems in den Untergrund und das aus Süden heranströmende Grundwasser wird nach Westen zu den Brunnen abgelenkt, sodass die Einzugsgebietsgrenze östlich vor dem Stau liegt. Bei geringem oder fehlendem Aufstau und hohen Grundwasserständen strömt das Grundwasser hingegen in die Ems ab und wird durch diese nach Westen abtransportiert, sodass sich die Grenze nach Westen etwa auf Höhe des Staus Neue Mühle verschiebt.

Die Südgrenze des Einzugsgebietes wird durch eine Grundwasserscheide zwischen Ems und Flütbach bedingt. Von der Grundwasserhochfläche im Bereich der Mattelmanns Heide strömt das Grundwasser nach Norden und Westen den Brunnen oder nach Süden dem Flütbach zu. Im weiteren Verlauf nach Westen wird die Südgrenze schließlich durch das hydraulisch wirksame Einzugsgebiet des Axtbaches begrenzt. Das nach Norden und Westen abströmende Grundwasser gelangt jedoch zu den Brunnen des Gewinnungsgebietes Vohren und zu den Brunnen des Gewinnungsgebietes Dackmar.

4.1.1.2 Wasserschutzgebiet (Ausdehnung und Abgrenzung der einzelnen Schutzzonen)

Das festgesetzte Wasserschutzgebiet Vohren/Dackmar weist eine Fläche von rund 25,5 km² auf mit einem Durchmesser von rund 8,5 km in West-Osterstreckung und rund 6,5 km in Nord-Westerstreckung (siehe *Anlage 6*).

Schutzzone I (Fassungsbereich)

Die Schutzzone I muss den Schutz der Trinkwassergewinnungsanlage und ihrer unmittelbaren Umgebung vor jeglichen Verunreinigungen und Beeinträchtigungen gewährleisten (DVGW-Arbeitsblatt W 101:2006 "Richtlinien für Trinkwasserschutzgebiete; I. Teil: Schutzgebiete für Grundwasser").

Die Schutzzone I umschließt die Brunnenfassungen mit einem im DVGW-Arbeitsblatt W 101:2006 geforderten Mindestabstand von 10 m.

Bei den Horizontalfilterbrunnen wird zudem ein Mindestabstand von 10 m um die Horizontalfilterstränge gewährleistet.

Flächen, die als Schutzzone I festgesetzt sind, befinden sich vollständig im Eigentum der Wasserversorgung Beckum GmbH und umfasst auch die optionalen Brunnenstandorte.

Schutzzone II (Engere Schutzzone)

Die Schutzzone II muss den Schutz vor Verunreinigungen durch pathogene Mikroorganismen sowie vor sonstigen Beeinträchtigungen gewährleisten, die bei geringer Fließdauer und -strecke zur Trinkwassergewinnungsanlage gefährlich sind (DVGW-Arbeitsblatt W 101:2006).

Eine Mindestverweildauer von 50 Tagen im Grundwasser gewährleistet in der Regel, dass pathogene Mikroorganismen zurückgehalten werden. Die Schutzzone II soll deshalb bis zu einer Linie reichen, von der aus das Grundwasser mindestens 50 Tagen bis zum Eintreffen in den Brunnen benötigt, wobei eine Mindestreichweite von 100 m zur Fassung nicht zu unterschreiten ist.

Schutzzone III (Weitere Schutzzone)

Die Schutzzone III soll den Schutz vor weitreichenden Beeinträchtigungen, insbesondere vor nicht oder nur schwer abbaubaren chemischen oder vor radioaktiven Verunreinigungen gewährleisten (DVGW-Arbeitsblatt W 101:2006).

Die Schutzzone III soll in der Regel bis zur Grenze des unterirdischen Einzugsgebietes der Trinkwassergewinnung reichen. Eine Unterteilung in die Schutzzonen IIIA und IIIB ist bei großen Einzugsgebieten ab 2 km Entfernung von den Fassungsanlagen sinnvoll. Ein geringerer Abstand zur Unterteilung der Schutzzone III ist in Gebieten mit einem höheren naturräumlichen Schutzpotenzial möglich.

Schutzzone III A

An der gesamten Wasserschutzgebietsfläche hat die Schutzzone IIIA mit rund 20 km² (2 010 ha) den größten Anteil. Sie umschließt die Schutzzone II und erstreckt sich von den Fassungsanlagen rund 1 bis 2 km nach Norden und 0,6 bis 2,0 km nach Süden.

Schutzzone III B

Der Empfehlung des DVGW-Arbeitsblattes W 101:2006 folgend ist mit einem Abstand von 2 km von den Fassungsanlagen die Schutzzone III in eine Schutzzone IIIA und IIIB unterteilt. In Gebieten mit einem höheren naturräumlichen Schutzpotenzial wurde der Abstand zur Unterteilung der Schutzzone III auf 800 m verkürzt.

Die Schutzzone IIIB unterteilt sich in drei Einzelflachen, die sich jeweils an die Schutzzone IIIA anschließen.

Wasserschutzgebietszone	Wasserschutzgebiets-VO vom 03.04.2014
I	14,7 ha
II	61,0 ha
IIIA	2 010,0 ha
IIIB	470,0 ha
WSG, gesamt	2 555,7 ha

Tab. 8 Größe der Wasserschutzgebietszonen

4.1.1.3 Hydrogeologie (Lage und Ausdehnung des beanspruchten Grundwasserleiters)

Das hydraulische System in den Wassergewinnungsgebieten Vohren und Dackmar wird im Wesentlichen durch die drei folgenden Komponenten geprägt:

- 1. Der quartäre Grundwasserleiter wird an der Basis durch wasserhemmende bis –stauende Kreideschichten begrenzt.
- 2. Die Ablagerungen der Niederterrasse und hier insbesondere die basalen Knochenkiese bilden den für die Trinkwassergewinnung relevanten Grundwasserleiter.
- 3. Die Ems bildet den Hauptvorfluter. Der natürliche Grundwasserstrom ist auf dieses Fließgewässer gerichtet. Zudem trägt der Uferfiltratanteil aus der Ems zur gewinnbaren Wassermenge bei.

Die Wassermengen, die aus einem Grundwasserleiter gewonnen werden können, hängen (neben Grundwassergefälle, Einzugsgebiet etc.) maßgeblich von der Mächtigkeit der wasserführenden Schicht und dem Durchlässigkeitsbeiwert (k_f-Wert) beziehungsweise dem Widerstand ab, den die Sedimente dem strömenden Wasser entgegensetzen.

Die wassererfüllte Mächtigkeit des Grundwasserleiters ist dabei aufgrund der weitgehend ebenen Oberflächenmorphologie in erster Linie von der Tiefenlage der kreidezeitlichen Wasserstauer abhängig. Der k_f-Wert wird durch die lithologische Ausprägung beziehungsweise Korngrößenzusammensetzung der angetroffenen Sedimente bestimmt.

Die Wassergewinnungsgebiete Vohren und Dackmar liegen am südlichen Rand eines Urstromtales mit der Uremsrinne als zentralem Element. Dieses erstreckt sich vor dem Teutoburger Wald liegend von Paderborn bis nach Rheine. Der Vorläufer der heutigen Ems hat sich hier vor über 100 000 Jahren flächig und insbesondere im Bereich der Uremsrinne in Form eines schmalen Kerbtals in den Kreideuntergrund eingeschnitten. Die Uremsrinne folgt in etwa dem heutigen Verlauf der Ems, wobei sie im Bereich des Wasserschutzgebietes Vohren/Dackmar nördlich der Ems in Ost-West-Richtung verläuft.

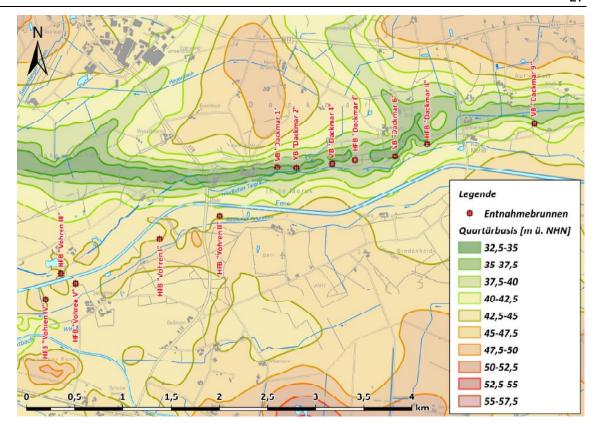


Abb. 10 Tiefenlage der Quartärbasis in m über NHN; Quelle: Ausschnitt aus der Geologischen Karten von Nordrhein-Westfalen: 1 : 25 000, Blatt 4014 Sassenberg

Die Rinnenstruktur weist im Untersuchungsgebiet ein geringes Gefälle nach Westen auf. Im Rinnentiefsten liegt die Quartärbasis im Osten bei unter 35 m ü. NHN (Normalhöhennull) und fällt nach Westen bis unter 33 m ü. NHN ein. Vom Rinnentiefsten steigt die Quartärbasis rasch nach Norden auf über 45 m ü. NHN und nach Süden bis auf über 43 m ü. NHN an. Auf Höhe des Brunnens HFB (Horizontalfilterbrunnen) "Dackmar II" im Wassergewinnungsgebiet Dackmar und südlich von Sassenberg treffen von Norden zwei weitere Rinnenstrukturen auf die Uremsrinne. Diese wahrscheinlich ehemaligen Seitenarme oder Zuflüsse der Urems haben sich jedoch weniger stark in den Untergrund eingeschnitten.

Im Gewinnungsgebiet Dackmar konnten die Brunnen weitestgehend im Rinnentiefsten errichtet werden. Die Brunnen erschließen hier eine wassererfüllte Quartärmächtigkeit von rund 18-19 m. Im Wassergewinnungsgebiet Vohren wurden die Brunnen südlich des Rinnentiefsten errichtet. Die Quartärbasis liegt auf Höhe der Brunnen bei rund 43-45 m ü. NHN. Die wassererschlossene Mächtigkeit der Brunnen beträgt hier somit lediglich 8 m bis maximal 10 m.

4.1.2 Ungenutzte Ressourcen

Gemäß der Darstellung der Bundesanstalt für Geowissenschaften und Rohstoffe (siehe *Anlage 10*) verfügt das Versorgungsgebiet der Wasserversorgung Beckum GmbH lediglich an der bereits genutzten Entnahmestelle in Warendorf-Vohren über ausreichende Grundwasservorkommen.

Im Bereich Wadersloh-Bornefeld wurde mit dem Wasserwerk Bornefeld bis zur Stilllegung im Jahr 1985 Grundwasser im Bereich der Lippe-Glenne gefördert. Das Wasserwerk sowie die Brunnenanlagen sind zurückgebaut und die Liegenschaften stehen der Wasserversorgung Beckum GmbH nicht mehr zur Verfügung.

Dennoch könnten die Grundwasserressourcen, wenn auch mit hohem Aufwand, genutzt werden.

Die Stadt Beckum verfügt über eine Vielzahl an grundwassergespeisten Seen, die über das Stadtgebiet verteilt sind und aus den Abgrabungen des Kalksteintagebaus resultieren. Informationen über die Wasserqualitäten liegen jedoch nicht vor.

4.2 Wasserbilanz

4.2.1 Gewinnbares Dargebot

Die durchschnittliche Grundwasserneubildung in den Einzugsgebieten der Wassergewinnungsgebiete Vohren und Dackmar beträgt 4,55 Mio. m³/a. Im Einzugsgebiet der Brunnen sind jedoch Rechte zur Entnahme von Grundwasser in einer Gesamtsumme von bis zu 73 000 m³/a erteilt worden (Stand: April 2011). Für die Hausbrunnen wird überschlägig angenommen, dass diese in der Summe circa 20 000 m³/a (= 65 Hausbrunnen x 300 m³/a) Grundwasser entnehmen. Diese Grundwassermengen gehen der öffentlichen Wassergewinnung verloren. Im Mittel sind rund 1,9 Mio. m³/a des geförderten Rohwassers Uferfiltrat der Ems. Hierdurch wird das Dargebot erhöht.

Demgegenüber steht eine Grundwasserentnahme durch die Brunnen der Wasserversorgung Beckum GmbH von maximal 5,92 Mio. m³/a.

Es ergibt sich so folgende Grundwasserbilanz:

Summe:		411 000 m ³ /a
Entnahme:	_	5 920 000 m ³ /a
Hausbrunnen*:	_	20 000 m³/a
weitere Wasserrechte:	_	73 000 m³/a
Infiltration aus der Ems:		1 900 000 m ³ /a
Grundwasserneubildung:		4 554 000 m ³ /a

^{*} Versorgung von Wohneinheiten und Vieh

In der Summe ergibt sich somit eine positive Bilanz von 411 000 m³/a. Die Gewinnbarkeit der bewilligten Menge kann somit sichergestellt werden. Die in der Bilanz als überschüssige Wassermenge ausgewiesenen 411 000 m³/a werden bei hohen Grundwasserständen über die Vorfluter aus den Gewinnungsgebieten abgeführt.

Die bewilligte Grundwasserentnahme von 5,92 Mio. m³/a wird bereits annähernd erreicht. Die bisherigen Erfahrungen bei der Bewirtschaftung des Grund-

wasserleiters zeigen keine Hinweise auf eine Überbeanspruchung des Grundwasserleiters.

4.2.2 Grundwasserneubildung

Die Höhe der in den Wassergewinnungsgebieten Vohren und Dackmar nachhaltig gewinnbaren Fördermenge ist neben der Infiltrationsmenge aus der Ems abhängig vom Umfang der Grundwasserneubildung im Einzugsgebiet. Die Grundwasserneubildungsmenge ist ihrerseits von verschiedenen Faktoren abhängig.

Bezeichnung	Flächen [km²]	Grundwasser- neubildung [m³/a]	Ø Grundwasser- neubildungsrate [mm/a]
Acker- und Grünland	18,42	3 918 000	213
Laubwald	0,92	148 000	161
Mischwald	1,73	243 000	140
Nadelwald	2,27	245 000	108
versiegelte Flächen	0,34	0	0
Gewässer	0,21	0	0
Summe	23,34 (23,89)	4 554 000	191 (195)

Tab. 9 Grundwasserneubildung in den Wassergewinnungsgebieten Vohren und Dackmar nach Nutzung

Für die Größe der Einzugsgebiete der Brunnen in den Wassergewinnungsgebieten Vohren und Dackmar wurde in der Summe eine Ausdehnung von 23,89 km² ermittelt. Hiervon wurden die versiegelten Flächen mit 0,34 km² und die Seeflächen mit 0,21 km² als nicht wirksames Grundwasserneubildungsgebiet abgezogen. Daraus resultiert eine für die Grundwasserneubildung wirksame Fläche von rd. 23,34 km². Die durchschnittliche Grundwasserneubildung auf Grundlage der Niederschlagsmenge im langjährigen Mittel von 731 mm/a beträgt so 4,55 Mio. m³/a, was einer durchschnittlichen mittleren Grundwasserneubildungsrate im gesamten Einzugsgebiet von rund 191 mm/a entspricht.

4.2.3 Weitere Wasserrechte

Nach Angaben der Unteren Wasserbehörde des Kreises Warendorf und der Unteren Wasserbehörde des Kreises Gütersloh sind im Einzugsgebiet der Brunnen in den Wassergewinnungsgebieten Vohren und Dackmar zahlreiche weitere Wasserrechte erteilt worden (Stand: April 2011). Eine Übersicht der verliehenen Wasserrechte ist der **Anlage 11** zu entnehmen.

Der Großteil der verliehenen Wasserrechte im Einzugsgebiet der Brunnen betrifft Staurechte und Einleitungen in Vorfluter.

Entnahmen aus Vorflutern betreffen 3 verliehene Wasserrechte mit einer Entnahmemenge von insgesamt maximal 30 000 m³/a aus der Ems und den Talgräben.

Daneben wurden Rechte zum Versickern von Niederschlagswasser in den Untergrund von in der Summe bis zu 125 l/s verliehen. Diese sind geeignet, das Grundwasserdargebot zu erhöhen und wirken sich damit positiv auf die Wasserbilanz aus. Sie konzentrieren sich mit einer Ausnahme auf das Einzugsgebiet des Brunnens VB "Dackmar 9".

Rechte zur Entnahme von Grundwasser wurden in einer Gesamtsumme von bis zu 73 000 m³/a im Einzugsgebiet der Brunnen der Wassergewinnungsgebiete Vohren und Dackmar erteilt. Hiervon entfallen rund 33 000 m³/a auf das Gewinnungsgebiet Vohren und rund 40 000 m³/a auf das Gewinnungsgebiet Dackmar. Hinzu kommen noch zusätzlich Entnahmen aus privaten Hauswasserversorgungen, einschließlich des landwirtschaftlichen Verbrauchs (beispielsweise Viehtränken). Diese Grundwassermengen sind für die öffentliche Wassergewinnung nicht verfügbar.

4.3 Entwicklungsprognose des quantitativen Wasserdargebots unter Berücksichtigung möglicher Auswirkungen des Klimawandels

Bei der Trinkwasserversorgung ist der Wasserbedarf in Nordrhein-Westfalen in den letzten Jahren kontinuierlich zurückgegangen, sodass die Versorgungssicherheit nach bisheriger Kenntnislage voraussichtlich auch bei zunehmenden Hitzeperioden und höherem Spitzenverbrauch nicht gefährdet sein wird. Einzelne Faktoren können die Wasserversorgung jedoch regional ungünstig beeinflussen (Quelle: Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz NRW). So können sich insbesondere in Gebieten mit zukünftig zurückgehender Grundwasserneubildung Nutzungskonkurrenzen um die Ressource Grundwasser ergeben – etwa in Teilbereichen der Niederrheinischen Bucht oder des Münsterlandes durch einen zunehmenden Bewässerungsbedarf von Landwirtschaft und kommerziellem Gartenbau. Eine reduzierte Grundwasserneubildung kann bei den vor allem in ländlichen Gebieten betriebenen Eigenwasserversorgungen Probleme verursachen (zum Beispiel im Münsterland).

Neben der quantitativen Beeinflussung der zur Verfügung stehenden Wasserressourcen kann der Klimawandel potenziell auch die Wasserbeschaffenheit beeinträchtigen.

Veränderungen der Eigenschaften und Belastungen von Fließgewässern können die stoffliche Zusammensetzung von Rohwässern aus Uferfiltrat oder angereichertem Grundwasser beeinflussen.

Trinkwassergewinnungs- und -aufbereitungsanlagen an Fließgewässern unterliegen künftig gegebenenfalls einem höheren Überflutungsrisiko.

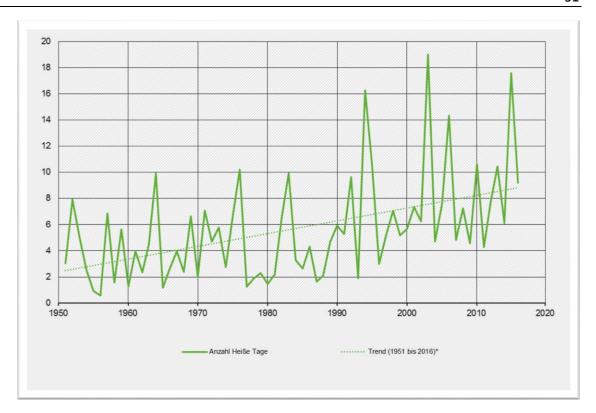


Abb. 11 Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 °C (Gebietsmittel) im Münsterland; Quelle: Deutscher Wetterdienst

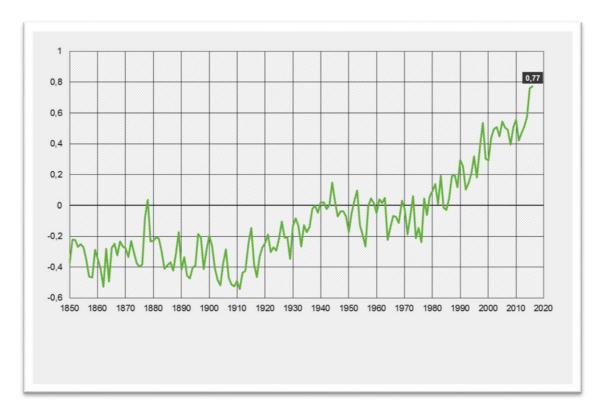


Abb. 12 Abweichung der globalen Lufttemperatur vom Durchschnitt 1961 – 1990 (Referenzperiode) im Münsterland; Quelle: Met Office Hadley Centre

So kann sich zum Beispiel durch Temperaturveränderungen von Oberflächengewässern die Belastung durch wasserübertragbare Krankheitserreger verändern. Erhöhte Luft- und Rohwassertemperaturen können außerdem die Trinkwasserhygiene in Trinkwasserspeichern (Hochbehältern) oder im Leitungsnetz zur Trinkwasserverteilung beeinträchtigen.

Tendenziell steht die Wasserversorgung zunehmend veränderlichen Randbedingungen gegenüber. Auf der einen Seite sind dies die klimatischen Änderungen, die regional und je nach genutzter Wasserressource zu einer unterschiedlichen Dynamik führen, auf der anderen Seite steht die demografische Entwicklung und damit verknüpfte Wasserbedarfsänderungen. Dieser Dynamik steht eine vergleichsweise inflexible Wasserinfrastruktur gegenüber. Gewinnungsanlagen, Verteilungsnetze und sonstige technische Anlagen binden hohe Investitionssummen, die über lange Nutzungsdauern von 50 bis 100 Jahren abgeschrieben werden.

Ein Ziel für den Umgang mit dem Klimawandel kann es daher auch sein, bestehende Infrastruktursysteme sowie ihre technisch mögliche Nutzungsdauer zu prüfen und gegebenenfalls weitere Aspekte (zum Beispiel die Entwicklung von Bevölkerung, Transportkapazitäten) bei Investitionen zu berücksichtigen (Zielnetzplanung).

Aufgrund der Heterogenität der Trends der Grundwasserstände und fehlender regionaler Muster zeichnen sich noch keine eindeutigen Auswirkungen des Klimawandels auf die der Wasserversorgung zur Verfügung stehenden Grundwasserressourcen und nutzbaren Dargebotsmengen ab. Stattdessen dürften bei der Bewirtschaftung der Grundwasserressourcen eher langfristige, aber dafür irreversible Entwicklungen – wie beispielsweise die Nitratproblematik – zunehmend relevant werden.

Wassergewinnungsanlagen, die Uferfiltrat zur Anreicherung von Grundwasser einsetzen, sind eher von klimabedingten Änderungen in der Wasserführung, aber auch von Güteänderungen in den genutzten Gewässern betroffen. Beeinträchtigungen der Güte können sich durch höhere Abwasseranteile bei Niedrigwasserphasen, aber auch durch erhöhte Trübungen und Nährstoffkonzentrationen bei Hochwasserereignissen ergeben.

Um den potenziellen Gefährdungen durch den Klimawandel zu begegnen, bestehen verschiedene Handlungsoptionen.

An Fließgewässern liegende und von Überflutungen bedrohte Trinkwassergewinnungsanlagen bedürfen unter Umständen eines verbesserten Hochwasserschutzes. Zusammenfassend ist mit folgenden Auswirkungen durch den Klimawandel zu rechnen:

- Zunahme von Klimaextremen
- Anstieg des Wasserbedarfs, insbesondere während "Dürren"
- Haushalte (Duschen, Gartenbewässerung), Landwirtschaft (Bewässerung) und Industrie (Kühlung) sind betroffen
- oftmals Steigerung des stündlichen/täglichen Spitzenbedarfs während der Trockenzeiten
- zusätzliche Maßnahmen können erforderlich sein (Hochbehälter, Druck, etc.)
- Anstieg der Wassertemperatur (Rohwasser und Trinkwasser auch in Leitungssystemen)
- Implikationen f
 ür Netzzustand (Korrosion) und Bakterienbelastungen
- ländlicher Raum (Verfügbarkeit der Eigenwasserversorgungsanlagen sinkt)
- Grundwasserneubildung (Flurabstand), Einzugsgebietsänderungen (Schutzgebiete) und hydrochemische Prozesse können betroffen sein
- Multiple Stressoren durch Klimawandel beeinflusst

Abb. 13 Beeinflussung der multiplen Stressoren durch den Klimawandel; Quelle: IWW, Mülheim an der Ruhr

Gemäß der Prognose zur Grundwasserneubildung kann es laut Landesamt für Natur, Umwelt und Verbraucherschutz NRW im Emskorridor für das gesamte Versorgungsgebiet zu einer geringfügigen Abnahme der Neubildung kommen (siehe *Anlage 12*). Dort liegen die Brunnen der Wassergewinnungsanlagen Vohren/Dackmar. Im direkten Umfeld der Ems wird hingegen mit steigenden Grundwasserneubildungsraten gerechnet. Da das gesamte Umfeld des Wassergewinnungsgebietes zum gleichen Grundwasserkörper gehört, werden sich die Schwankungen in der Neubildung voraussichtlich ausgleichen.

34

Die Brunnen lokaler Eigenwasserversorgungen müssen bei fallenden Grundwasserspiegeln eventuell tiefer gebohrt werden. Erhöhte Stoffeinträge in die Gewässer (zum Beispiel Nitrat) als Folge veränderter Flächennutzungskonzepte in der Landwirtschaft erfordern gegebenenfalls neue oder erweiterte Wasseraufbereitungskonzepte, innovative Strategien zur Flächenextensivierung oder veränderte Managementkonzepte zur weiteren Vernetzung von Trinkwassergewinnungsgebieten.

5 Rohwasserüberwachung/Trinkwasseruntersuchung und Beschaffenheit Rohwasser/Trinkwasser

5.1 Überwachungskonzept Rohwasser und Probenahmeplan Trinkwasser

5.1.1 Rohwasserüberwachung/Überwachung der Ressourcen

Gemäß den Bestimmungen des Landeswassergesetzes (LWG) von Nordrhein-Westfalen sind die Unternehmen der öffentlichen Trinkwasserversorgung verpflichtet, die Beschaffenheit des Rohwassers zu untersuchen und die Untersuchungsergebnisse der zuständigen Behörde jährlich zu übermitteln (LWG § 50 Verpflichtung zur Selbstüberwachung). Häufigkeit und Umfang der Rohwasseruntersuchungen regelt die Rohwasserüberwachungsrichtlinie des Landes NRW vom 12.03.1991. Zuständig für die Entgegennahme der Untersuchungsergebnisse sind bei Entnahmen von mehr als 600 000 m³/a die Bezirksregierungen. Bei kleineren Entnahmen liegt die Zuständigkeit in der Regel bei den unteren Wasserbehörden.

Um Veränderungen des anströmenden Grundwassers frühzeitig zu erkennen, erfolgt darüber hinaus die Überwachung der Grundwasserbeschaffenheit im Vorfeld der Trinkwassergewinnungsanlage an sogenannten Vorfeldmessstellen. Bei der Trinkwassergewinnung aus Oberflächengewässern beziehungsweise von Uferfiltrat oder aus Oberflächenwasser künstlich angereichertem Grundwasser werden die Ergebnisse aus der Oberflächenwasserüberwachung zur Beurteilung einbezogen.

Die Daten aus der Rohwasserüberwachung sowie aus der Grundwasser- und Oberflächengewässerüberwachung sind wichtige Grundlagen für die Früherkennung, Planung und Überprüfung der Maßnahmen im Einzugsgebiet und sind Voraussetzung für Planung, Errichtung und Betrieb der Wasserversorgungs- und Aufbereitungsanlagen.

Der Untersuchungsplan für die regelmäßigen Untersuchungen des Rohwassers aus dem Wasserwerk Vohren ist in *Anlage 13* dargestellt.

Abb. 14 Übersichtskarte mit den Messstellen für die Rohwasserüberwachung des Wasserwerkes Vohren

5.1.2 Trinkwasserüberwachung

Die Anforderungen an das Wasser, welches zum Trinken oder zum Zubereiten von Speisen verwendet wird, sind in der Trinkwasserverordnung (TrinkwV) geregelt. In dieser Verordnung werden neben den Grenzwerten und technischen Anforderungen an die Wasserversorgungsanlage, Überwachungszuständigkeiten und ordnungsrechtliche Maßnahmen festgelegt und definiert. Zentrales Ziel dieser Verordnung ist die Sicherung der Qualität des Trinkwassers.

Diese umfasst neben den bakteriologischen und chemischen Wasseruntersuchungen, auch regelmäßige Überprüfungen der Wasserfassungen sowie der Aufbereitungsanlagen.

Der Untersuchungsplan für die regelmäßigen Untersuchungen des Trinkwassers ist in **Anlagen 14** und **15** dargestellt.

5.2 Beschaffenheit von Rohwasser und Trinkwasser

5.2.1 Beschaffenheit des Rohwassers aus dem Wasserwerk Vohren

Das im Wasserwerk Vohren aufzubereitende Rohwasser ist ein Mischwasser aus Uferfiltrat (circa 30 Prozent) und originärem Grundwasser (circa 70 Prozent).

Im Gewinnungsgebiet Vohren betragen der Uferfiltrat- und der Grundwasseranteil am geförderten Rohwasser jeweils etwa die Hälfte, im Gewinnungsgebiet Dackmar überwiegt mit über 90 Prozent der Grundwasseranteil.

In der **Anlage 16** sind die Analysen der zwölf Brunnenanlagen aus dem Jahr 2016 (Mittelwerte) zusammengestellt.

Bis in die 1980er Jahre hinein wies das geförderte Rohwasser der Brunnen nur geringe Nitratwerte auf. Der massive Eintrag von Düngemitteln aus der Landwirtschaft hat ab Anfang der 1990er Jahren dazu geführt, dass, nachdem die Selbstreinigungskraft des Untergrundes stark herabgesetzt war, Nitrat in größeren Mengen zu den Brunnen gelangen konnte. Als sekundäre Folge hat der Düngemitteleintrag als hauptsächliche Ursache zum Anstieg der Sulfat-, Hydrogenkarbonat- und Circalciumwerte geführt. Mit steigenden Hydrogencircarbonat- und Sulfatwerten (Eintrag über Dünger und schwefelhaltige Verbrennungsgase aus der Luft) geht Circalcium als Reaktionspartner aus dem Boden in Lösung. Die Folge ist eine Aufhärtung der Rohwässer.

Im Jahr 1991 wurde die Kooperation Landwirtschaft/Wasserwirtschaft gegründet. Die Umstellung der Bewirtschaftung auf eine pflanzenbedarfsgerechte Düngung hat in den folgenden Jahren zu einer Reduzierung der Nitrateinträge geführt. Trotz des herabgesetzten Denitrifizierungsvermögens des Untergrundes sind die Nitratgehalte im Rohwasser der Brunnen in beiden Gewinnungsgebieten bis etwa 2005 deutlich zurückgegangen und bewegen sich seitdem in den meisten Brunnen auf einem akzeptablen Niveau. So liegen die Nitratwerte aktuell in den Horizontalfilterbrunnen (HFB) bei 10 mg/l und in den Vertikalfilterbrunnen (VB) um 20 mg/l. Derzeit weist lediglich der Brunnen VB "Dackmar 3" im Gewinnungsgebiet Dackmar mit rund 35 mg/l noch erhöhte Nitratwerte auf. Auch die sekundären Parameter sind seit Mitte der 1990er Jahre zurückgegangen (Sulfat und Calcium) beziehungsweise stagnieren (Hydrogenkarbonat).

Die weiteren analysierten Stickstoffverbindungen Ammonium und Nitrit stellen kein Problem dar. So liegen die Werte im Rohwasser bereits bis auf wenige Ausnahmen unter den Grenzwert der TrinkwV. Durch die Oxidationsprozesse während der dreistufigen Aufbereitung werden Ammonium und Nitrit zu Nitrat oxidiert, sodass im Reinwasser die Werte für Ammonium und Nitrit schließlich zumeist unter der Nachweisgrenze liegen.

Kontinuierlich gestiegen sind die Kaliumwerte im Grundwasser. In der derzeitigen Fassung der TrinkwV von 2001 wurde kein Grenzwert mehr für Kalium definiert. Die Werte stellen somit derzeit nur noch einen Indikator für den diffusen Eintrag aus der Landwirtschaft dar.

Die Böden im Einzugsgebiet der Wassergewinnungsanlagen weisen augenscheinlich eine günstige Pufferwirkung auf. Unter den vorherrschenden neutralen bis leicht basischen pH-Werten sind Schwermetalle und Aluminium wenig mobil und stellen somit hier kein Problem dar. Einzig Arsen als typisches Abbauprodukt bei der Denitrifizierung unter Aufbruch von Pyrit wird regelmäßig nachgewiesen, jedoch in Konzentrationen, die deutlich unter dem Grenzwert der TrinkwV liegen.

Chlorierte Kohlenwasserstoffe wurden weder im Roh- noch im Reinwasser oder den Vorflutern seit über 15 Jahren nachgewiesen. Auch die älteren Einzelbefunde lagen im Bereich der Bestimmungsgrenze. Der Grenzwert der TrinkwV von 0,01 mg/l wurde in allen Fällen deutlich unterschritten.

Vereinzelt wurden in der Vergangenheit PSM (Pflanzenschutzmittel) nachgewiesen. Hier zeichnet sich jedoch ein positiver Trend ab. So liegt der letzte Nachweis von PSM im Rohwasser eines Brunnens bereits mehr als zehn Jahre zurück.

Die Eisen- und Mangangehalte im Rohwasser liegen über den jeweiligen Grenzwerten der TrinkwV, weshalb es im Wasserwerk Vohren einer dreistufigen Aufbereitung unterzogen wird. Die Aufbereitung bewirkt dabei die fast vollständige Eliminierung von Eisen und Mangan.

Auf Höhe des Wassergewinnungsgebietes Vohren weist das Emswasser die Gewässergüteklasse II – mäßig belastet – auf (Ergebnisbericht Obere Ems im Rahmen der Wasserrahmenrichtlinie Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz, Stand: April 2010). Das Emswasser weist dabei die typischen Qualitätseinbußen eines Gewässers auf, in dessen Einzugsgebiet intensive Landwirtschaft betrieben wird. Neben einer mittlerweile akzeptablen Nitratfracht von unter 20 mg/l sind dieses in der Vergangenheit auch immer wieder Nachweise von PSM gewesen. Die Nachweise von PSM sind in den letzten Jahren jedoch rückläufig. Wie für ein Oberflächengewässer nicht ungewöhnlich, entspricht es zudem aus hygienisch-bakteriologischer Sicht oftmals nicht den Anforderungen der TrinkwV. Bei Hochwasser und der damit einhergehenden erhöhten Eintragsgefahr pathogener Keime erfolgt deshalb dann präventiv eine Chlorung des Reinwassers.

Im Rahmen einer Sonderuntersuchung durch das Institut IWW, Mülheim an der Ruhr, wurden im April und Mai 2017 Proben des Rohmischwassers und des Trinkwassers aus dem Wasserwerk Vohren sowie aus den Oberflächengewässern Ems, Nördlicher und Südlicher Talgraben untersucht.

Es wurden folgende Stoffgruppen untersucht:

- 1. Relevante Humanpharmaka
- 2. Röntgenkontrastmittel (RKM)
- 3. Antibiotika
- 4. Betablocker
- 5. Komplexbildner
- 6. Süßstoffe
- 7. Benzotriazole
- 8. Trifluoressigsäure (TFA)

Bei der Bewertung der Stoffe ist besonders auf das Rohmischwasser eingegangen worden. Es ist davon auszugehen, dass durch die Aufbereitung im Wasserwerk Vohren keine Entfernung beziehungsweise Minderung der Stoffe auftritt, weil keine Aktivkohle oder andere Adsorptionsverfahren eingesetzt werden. Insofern ist davon auszugehen, dass im Trinkwasser quasi identische Gehalte gefunden werden.

Trifluoressigsäure (TFA) wurde mit einer Konzentration von 2,2 μg/l (Mikrogramm pro Liter) nachgewiesen. Das ist von den beobachteten Spurenstoffen im Trinkwasser der höchste Gehalt, der aber noch deutlich unter dem gesundheitlichen Orientierungswert (GOW) liegt. Seit Januar 2017 stuft das Umweltbundesamt (UBA) den Stoff als nicht relevanten Metaboliten von PSM mit einem GOW von 3,0 μg/l ein. Die bisher gemessenen Konzentrationen an TFA im Wasser sind nach derzeitiger Auffassung des UBAs toxikologisch unkritisch und daher unbedenklich. Neben einer Herkunft als Metabolit aus PSM kann TFA nach dem derzeitigen Kenntnisstand aus weiteren Quellen in die Gewässer gelangen. Das sind insbesondere punktuelle Einleitungen aus der Industrie (zum Beispiel Synthese von Kältemitteln) sowie Einträge aus dem Abbau verschiedener Kunststoffe.

Aktuell wird für das Trinkwasser aus dem Wasserwerk Vohren bezüglich TFA kein weiterer Handlungsbedarf gesehen, weil der GOW deutlich unterschritten wird.

Daneben werden in sehr kleiner Konzentration Pharmaka (Circarbamazepin), Röntgenkontrastmittel (Amidotrizoesäure, lothalamicsäure und lopamidol), Süßstoffe (Aspartam), Komplexbildner (EDTA) sowie Industriechemikalien (verschiedene Benzotriazole) gefunden. Alle Konzentrationen liegen weit unter den jeweiligen GOW für die Stoffe, falls solche dafür bereits abgeleitet worden sind. Insofern besteht für diese Stoffe ebenfalls kein weiterer Handlungsbedarf.

Es wird kein Grund für eine aktive Information der Verbraucher ihres Trinkwassers gesehen. Es liegt keine Grenzwertüberschreitung und keine Gefährdungssituation vor und es sind keine besonderen Handlungsweisen oder Verzehränderungen erforderlich.

Die Stoffnachweise belegen eine anthropogene Beeinflussung des Rohwassers durch kommunales Abwasser. Dies ist jedoch bei der spezifischen Wasserressource im Wasserschutzgebiet Vohren/Dackmar unvermeidlich.

Maßnahmen seitens des Wasserversorgers zur Verminderung der Gehalte im Sinne des Minimierungsgebots wären mit einem nicht vertretbaren Aufwand verbunden und zudem für den Verbraucher völlig nutzlos.

Damit werden alle diesbezüglichen rechtlichen Anforderungen an das Trinkwasser erfüllt und es bestehen keine Bedenken gegen einen uneingeschränkten Konsum des Wassers.

5.2.2 Beschaffenheit des Trinkwassers im Versorgungsgebiet der Wasserversorgung Beckum GmbH

Die vorliegenden regelmäßigen Trinkwasseranalysen entsprechen den Vorgaben der TrinkwV und sind daher ohne Beanstandung. Gelegentlich lokale Auffälligkeiten im Netz sind durch Sofortmaßnahmen und Ursachenbeseitigung in der Regel schnell behoben.

Die Jahresmittelwerte aus dem Jahr 2016 sind in **Anlage 17** für die im Versorgungsgebiet der Wasserversorgung Beckum GmbH verteilten Trinkwässer dargestellt.

5.2.3 Beschaffenheit des Wassers aus Kleinanlagen der Eigenversorgung

Die Beschaffenheit von Trinkwasser bei Kleinanlagen zur Eigenversorgung und dezentralen kleinen Wasserwerke wird durch das Gesundheitsamt des Kreises Warendorf regelmäßig kontrolliert. Wesentliche Auffälligkeiten stellen die Parameter Nitrat und Mikrobiologie dar. Die Anzahl an Grenzwertüberschreitungen bei Nitrat ist vergleichsweise gering, bezüglich der Mikrobiologie ist der Anteil höher. Betroffene Anlagenbetreiber werden zu einer entsprechenden Sanierung aufgefordert. Bis zur Wiederherstellung der Trinkwasserqualität gelten entsprechende Nutzungseinschränkungen des Wassers. Bisher sind seitens des Gesundheitsamtes keine Stilllegungen von Hausbrunnen erfolgt. Zum jetzigen Zeitpunkt ist von Stilllegungen von Hausbrunnen auch nicht auszugehen. Unter diesem Gesichtspunkt ist der Anschluss einer erheblichen Zahl bisheriger Eigenversorger an die öffentliche Trinkwasserversorgung derzeit nicht absehbar.

Die Beschaffenheit des Wassers aus Kleinanlagen der Eigenversorgung ist in der **Anlage 8** aufgeführt.

6 Wassertransport

6.1 Darstellung und Beschreibung des Transportsystems inklusive Pumpwerke und Übergabestationen

Übernahmestationen	von
Schacht Wadersloh-Bornefeld	Wasserverband Aabach-Talsperre
	(Wasserwerk in Bad Wünnenberg)
Druckerhöhungs- und Speicheranlage	GELSENWASSER AG (Wasserwerk in
Beckum	Echthausen/Wickede an der Ruhr)
Schacht Rippelbaum	Wasserbeschaffungsverband Sas-
	senberg-Versmold-Warendorf
	(Wasserwerk Füchtorf)
Druckerhöhungs- und Speicheranlage	Stadtwerke Warendorf GmbH
Müssingen der Stadtwerke Warendorf	
GmbH (Durchleitung)	
Schacht Warendorf, groß (über Rohr-	Stadtwerke Warendorf GmbH
netzpumpe)	
Schacht Beckum, Holtmarweg	GELSENWASSER AG (Wasserwerk in
	Echthausen/Wickede an der Ruhr)
Übergabestationen	an
Schacht Warendorf, groß	Stadtwerke Warendorf GmbH
Schacht Warendorf, klein	Stadtwerke Warendorf GmbH
Schächte Emsort und Vennstraße	Stadt Sassenberg
Schacht Milte	Stadtwerke Warendorf GmbH
Schacht Rippelbaum	Wasserbeschaffungsverband Osn-
	abrück Süd
Schacht Langenberg (bei Hecker)	VGW GmbH Rheda-Wiedenbrück
Schacht Marburg (Druckerhöhungsanla-	VGW GmbH Rheda-Wiedenbrück
ge)	
Druckerhöhungs- und Speicheranlage	Gemeindewerke Everswinkel GmbH
Müssingen der Stadtwerke Warendorf	
GmbH (Durchleitung)	
Notversorgung	an
Notversorgung über Leitung in Waders-	Stadtwerke Lippstadt GmbH
Ioh-Bornefeld, am Punkt Strothbach	
(Hydrant)	
Notversorgung über Leitung Ostinghau-	Stadtwerke Lippstadt GmbH
sen/Lohe (Hydrant)	
Notversorgung über Leitung St. Vit/VGW	VGW GmbH Rheda-Wiedenbrück
GmbH Rheda-Wiedenbrück (Hydrant)	

Tab. 10 Übernahme- und Übergabestationen für Trinkwasser und Notversorgung

Internes Transportsystem: Zubringer- und Hauptleitungen (Betreiber: Wasserversorgung Beckum GmbH) in den Nennweiten DN 150 bis DN 500.

Eine Übersicht über das Transportnetz (Versorgungsübersicht) ist in *Anlage 18* dargestellt.

Pumpwerke und Wasserspeicher:

- Wasserwerk Vohren (600 m³ Speichervolumen)
- Druckerhöhungs- und Speicheranlage Ennigerloh (4 000 m³ Speichervolumen)
- Druckerhöhungs- und Speicheranlage Oelde (4 000 m³ Speichervolumen)
- Druckerhöhungs- und Speicheranlage Stromberg (1 200 m³ Speichervolumen)
- Druckerhöhungs- und Speicheranlage Beckum (15 000 m³ Speichervolumen)

6.2 Beschreibung der Instandhaltungsstrategie für die Sanierung und Erneuerung

Basis der Strategie im Rohrnetz ist eine zustands- und risikoorientierte Erneuerungsplanung, die den optimalen Zeitpunkt einer Baumaßnahme beschreibt. Grundlage sind: die Rohrnetzberechnung mit Reha-Konzept, die Zielnetzanalyse, die Löschwassermengenermittlung, die Behälteroptimierungsanalyse und das Störfallkonzept.

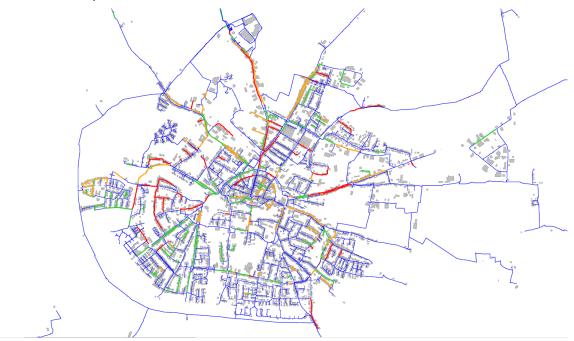


Abb. 15 Auszug aus dem Rohrnetzerneuerungsplan der Wasserversorgung Beckum GmbH

6.3 Angabe der Verlustrate

Die Verlustrate in den Jahren 2015/2016 betrug 2,8 bis 3,4 Prozent.

7 Wasserverteilung

7.1 Plan des Wasserverteilnetzes

Das Wasserverteilnetz einschließlich der Zubringer- und Hauptleitungen ist im Übersichtsplan (**Anlage 18**) dargestellt. Die einzelnen Druckzonen sind farblich hinterlegt. Die Trennung derselben erfolgt über die Druckerhöhungsstationen, Trennschieber und Druckminderanlagen.

7.2 Auslegung des Verteilnetzes

7.2.1 Besondere Situationen (zum Beispiel Spitzenlastfälle)

Das Versorgungsnetz der Wasserversorgung Beckum GmbH ist im Wesentlichen durch Vermaschungen geprägt. Einzelne Stichleitungen sind im Randbereich und in ländlichen Randlagen zur Versorgung einzelner Hoflagen ausgebildet.

Die Einspeisepunkte liegen im Norden (Wasserwerk Vohren), im Südosten (Übernahme Wadersloh-Bornefeld) und im Westen (Übernahme Drückerhöhungs- und Speicheranlage Beckum).

Hauptflussrichtung in den Teilgebieten Vohren-Ennigerloh-Oelde-Beckum-Lippetal ist von Nord nach Süd, lediglich im Bereich Wadersloh-Langenberg fließt das Trinkwasser von Süd nach Nord und von Wadersloh nach Beckum.

Über die Druckerhöhungs- und Speicheranlage Beckum besteht die Möglichkeit in alle Richtungen zu versorgen und die Versorgung der eigenen Endkunden sicherzustellen.

Für eine komplette Beherrschung des Ausfalls des Bezugs Gelsenwasser wird eine Mindestbezugsmenge von circa 500 m³/d in Beckum über das Wasserwerk Vohren oder den Fremdbezug Aabach-Talsperre benötigt. Diese Vorhaltung gilt jedoch ausschließlich für einen andauernden Ausfall (länger als zwei Wochen). Der Störfall eines anderen Haupteinspeisewerkes (Wasserwerk Vohren, Bezug Aabach-Talsperre) oder der Anlage Oelde beziehungsweise Ennigerloh ist mit Einschränkungen, verbunden mit empfohlenen Netzeingriffen, beherrschbar.

Ein Ausfall der Eigenversorgung Wasserwerk Vohren erfordert eine Reduzierung der Transitmengen, zudem muss man von den markanten Hochpunkten mit Druckschwankungen rechnen (zum Beispiel Ennigerloh – Ortsteil Ostenfelde). Für den Fall, das Transitmengen temporär unterbrochen werden, müssen bei den betroffenen Nachbarunternehmen eigene Störfallkonzepte greifen.

Druck-/Strömungsverhältnisse bei Spitzenbedarf (Stand: 2011)

Eine lineare Hochrechnung des Netzverbrauchs auf den Wert 1 360 m³/h zuzüglich Transitmengen wird der Spitzenbedarfsrechnung zugrunde gelegt.

Für jede Druckzone errechnet sich die Druckzonenbelastung als Summe der Abgaben in der Zone entsprechend der zugeordneten Verbräuche und der Ausspeisemenge aus der Zone an Überspeisungen, Behälterfüllungen oder Übergabestellen der Transitmenge.

Insgesamt ist für das Verteilungsnetz der Wasserversorgung Beckum GmbH festzuhalten, dass unter Berücksichtigung der am 09.05.2011 aufgetretenen Spitzenabgaben keine kritischen hydraulischen Engpässe ersichtlich sind. Die Spitzenabgaben an 4 folgenden Tagen in 2017 konnten gleichfalls sicher abgefahren werden.

7.2.2 Löschwasserentnahmen

Die Löschwasserbereitstellung ist eine Sondernutzungsform des Trinkwasserleitungsnetzes und erfolgt zu den Bedingungen der Wasserlieferverträge vom 01.04.1970 und 01.10.1970 sowie der Nachtrag 1 (06.05.1991) und Nachtrag 2 (28.02.2007) der Stadt Beckum mit der Wasserversorgung Beckum GmbH.

In § 10 wird festgelegt, dass "in dem Rohrnetz eine ausreichende Anzahl Feuerlöschhydranten im Einvernehmen mit den Feuerschutzträgern einzubauen" sind und in Brandfällen und bei Feuerwehrlöschübungen "das Wasser unentgeltlich abgegeben" wird.

Für das Versorgungsgebiet der Wasserversorgung Beckum GmbH gibt es einen flächendeckenden Löschwassermengenplan mit Stand 2013.

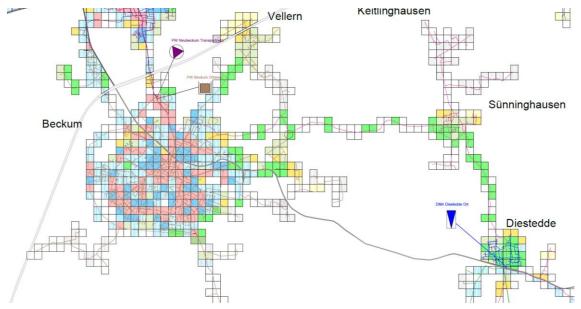


Abb. 16 Auszug aus dem Löschwassermengenplan der Wasserversorgung Beckum GmbH

Grundlage ist die Löschwasservorhaltung für den Grundschutz mit aktuellem Netzverbrauch an einem Tag mit mittlerem Verbrauch bei größter stündlicher Abgabe. Dabei orientiert sich die Wasserversorgung Beckum GmbH an die DVGW-Arbeitsblätter W 400:2004-2017 "Technische Regeln Wasserverteilungsanlagen (TRWV)", Teile 1-3 und W 405:2008-2017 "Bereitstellung von Löschwasser durch die öffentliche Trinkwasserversorgung".

Grundsätzlich hat die Löschwasserentnahme sich der Sicherstellung der Trinkwasserversorgung und -hygiene unterzuordnen.

Auswertung der Ergebnisse der Löschwasserberechnungen

Die Löschwasserberechnungen führen zu folgender Leistungsstatistik:

Lösch	wasserklasse		Prozent-	Anteil von
Nr.	(m³/h)	Anzahl	allen	rechenbaren
INI.	(111 /11)	Quadrate	Quadraten	Quadraten
0	0	1 177	30,2	0,0
1	>24	255	6,5	9,4
2	24	115	3,0	4,2
3	36	185	4,8	6,8
4	48	430	11,0	15,8
5	72	285	7,3	10,5
6	96	945	24,3	34,8
7	144	271	7,0	10,0
8	192	231	5,9	8,5
	gesamt	3 894	100,0	100,0

Tab. 11 Ergebnisse aus der Löschwasserberechnung

Zusammenfassend ist zu vermerken, dass in ausgeprägten Höhenlagen und im Randbereich der Siedlungsgebiete das Mengendargebot begrenzt ist. Hier setzt das Löschwasserkonzept 2017 der Feuerwehr Beckum an. Die Löschwasserversorgung wird in den Außenbereichen durch die Bereitstellung von Löschteichen sowie Tankfahrzeugen sichergestellt.

Der Löschwasserbedarf soll den Trinkwasserbedarf nicht oder nicht wesentlich übersteigen.

7.2.3 Fließgeschwindigkeiten und Wasserverweildauer im Netz und identifizierte Problembereiche (zum Beispiel starke Druckschwankungen oder Stagnation)

Stagnationsbetrachtung bei heutigem Normalbedarf

Für die lineare Umrechnung des Spitzenbedarfs auf den heutigen Normalbedarf wurde in Anlehnung an das Technische Regelwerk (siehe DVGW-Arbeitsblatt W 400-1:2015 "Technische Regeln Wasserverteilungsanlagen (TRWV); Teil 1: Planung") der Faktor 0,7 zugrunde gelegt.

Es wurde angenommen, dass im Normalbedarf die Abnehmer der Netze VGW und der aus Vohren Nord mitversorgten Gemeinden auch nur 70 Prozent des Spitzenbedarfs verbrauchen.

Basierend auf dem Netzstand und Netzbetrieb wie am Spitzentag wurde der Verbrauch linear von 2 440 m³/h auf 1 708 m³/h umgerechnet.

Dieser Rechenfall mit der Netzbelastung "heutiger Normalbedarf" dient unter anderem zur Untersuchung der Stagnationsgebiete.

Die Rechenstränge wurden gemäß ihrer Fließgeschwindigkeit in 5 Kategorien unterteil. Für das untersuchte Gebiet der Wasserversorgung Beckum GmbH ergibt sich bei heutigem Normalbedarf folgende Verteilung:

Durchfluss	Fließgeschwin- digkeit (m/s)	Anzahl Leitungslä Rechen- ge stränge (m)		Anteil (auf Leitungs- länge) (%)
stagnierend	<0,005	4 177	168 490	15,6
gering	0,005 - 0,1	6 720	633 146	58,7
normal	0,1 – 0,3	1 671	183 418	17,0
hoch	0,3 – 0,5	394	43 525	4,0
sehr hoch	>0,5	318	50 189	4,7
Summe		13 280	1 075 768	100,0

Tab. 12 Statische Auswertung der Verteilung der Fließgeschwindigkeiten bei heutigem Normalbedarf

Fast 75 Prozent der Stränge sind entweder stagnierend oder weisen geringe Fließgeschwindigkeiten (bis 0,1 m/s) auf. Diesen Leitungsklassen sind im Spülprogramm der Wasserversorgung Beckum GmbH besondere Aufmerksamkeit zu widmen. Zudem ist bei Ersatzerneuerungen der Einsatz kleinerer Rohrdimensionen zu prüfen.

Unter den als "stagnierend" gekennzeichneten Strängen sind einige Behälterfüllleitungen enthalten, die in der nachgebildeten Netzhydraulik (meist mit sehr geringer Behälterfüllung) tatsächlich einen kleinen Durchfluss haben, im realen Betrieb aber täglich über mehrere Stunden normal durchflossen werden.

- 7.3 Technische Ausstattung, Materialien, Durchschnittsalter, Dichtigkeit, Schadensfälle, Substanzerhalt
- 7.3.1 Nennweiten- und Werkstoffverteilung, Werkstoffalter, Wasserverlustrate, Rohrschadensrate, durchschnittliche Rehabilitation/Netzerneuerungsrate

Das Wassernetz ohne Hausanschlussleitungen der Wasserversorgung Beckum GmbH weist gemäß den Daten (2018) aus dem geografischen Informationssystem (GIS) folgende Werkstoffarten, Längen und Altersstruktur auf:

Stadt/Gemeinde	Material	Leitungslänge	Ø Alter	
Staat, demeniae	(Originalbezeichnung)	(km)	(a)	
Beckum	Asbestzement (AZ)	31,9	47	
	Grauguss (GG)	2,9	59	
	duktiles Gusseisen (GGG)	10,2	38	
	Polyethylen, hart (PEh)	25,1	22	
	Polyvinylchlorid (PVC)	153,2	31	
	Stahl (St)	6,7	23	
	Polyethylen (PE) 100	21,6	8	
	Polyethylen (PE) 80	3,0	11	
Summe		254,6	30	
Oelde	Asbestzement (AZ)	29,1	45	
	Grauguss (GG)	2,1	76	
	duktiles Gusseisen (GGG)	4,7	34	
	Polyethylen, hart (PEh)	19,3	22	
	Polyvinylchlorid (PVC)	122,7	32	
	Stahl (St)	5,1	22	
	Polyethylen (PE) 100	16,2	9	
	Polyethylen (PE) 80	2,1	12	
Summe	,	201,3	32	
Ennigerloh	Asbestzement (AZ)	6,0	45	
_	Grauguss (GG)	0,9	68	
	duktiles Gusseisen (GGG)	6,9	34	
	Polyethylen, hart (PEh)	12,7	19	
	Polyvinylchlorid (PVC)	97,2	34	
	Stahl (St)	5,0	20	
	Polyethylen (PE) 100	17,5	9	
	Polyethylen (PE) 80	0,7	7	
Summe	, , ,	146,9	30	
Wadersloh	Asbestzement (AZ)	40,5	56	
	Grauguss (GG)	0,1	58	
	Polyethylen, hart (PEh)	16,2	24	
	Polyvinylchlorid (PVC)	62,8	32	
	Stahl (St)	0,4	16	
	Polyethylen (PE) 100	8,2	7	
	Polyethylen (PE) 80	0,4	14	
Summe		128,6	30	

Stadt/Gemeinde	Material (Originalbezeichnung)	Leitungslänge (km)	Ø Alter (a)
Lippetal	Asbestzement (AZ)	32,2	53
	Grauguss (GG)	0,1	54
	duktiles Gusseisen (GGG)	0,1	16
	Polyethylen, hart (PEh)	38,0	25
	Polyvinylchlorid (PVC)	97,4	35
	Stahl (St)	0,9	15
	Polyethylen (PE) 100	5,8	6
	Polyethylen (PE) 80	1,4	10
Summe		175,9	27
Langenberg	Asbestzement (AZ)	18,7	56
	Polyethylen, hart (PEh)	3,7	24
	Polyvinylchlorid (PVC)	25,0	32
	Stahl (St)	0,2	23
	Polyethylen (PE) 100	7,4	5
	Polyethylen (PE) 80	0,5	4
Summe	· · · · · · · · · · · · · · · · · · ·	55,5	24
Beelen	Asbestzement (AZ)	7,7	47
	Polyethylen, hart (PEh)	3,1	26
	Polyvinylchlorid (PVC)	28,5	35
	Polyethylen (PE) 100	5,2	7
Summe		44,5	29
Rheda-Wiedenbrück	Asbestzement (AZ)	5,3	44
(nur Ortsteile Batenhorst	Polyethylen, hart (PEh)	2,4	24
und St. Vit)	Polyvinylchlorid (PVC)	18,9	44
	Polyethylen (PE) 100	3,4	6
	Polyethylen (PE) 80	0,2	9
Summe		30,2	25
Ahlen	Asbestzement (AZ)	2,0	51
(nur Ortsteile Vorhelm und	Grauguss (GG)	1,5	58
Tönnishäuschen)	Polyethylen, hart (PEh)	2,1	27
	Polyvinylchlorid (PVC)	2,1	30
	Stahl (St)	0,4	19
	Polyethylen (PE) 100	3,4	11
	Polyethylen (PE) 80	0,2	16
Summe		11,7	30
Bad Sassendorf	Asbestzement (AZ)	7,4	54
(nur Ortsteile Ostinghau-	Polyethylen, hart (PEh)	3,3	24
sen, Bettinghausen und	Polyvinylchlorid (PVC)	15,2	48
Weslarn)	Polyethylen (PE) 100	0,8	10
	Polyethylen (PE) 80	0,2	11

Stadt/Gemeinde	Material	Leitungslänge	Ø Alter
	(Originalbezeichnung)	(km)	(a)
Summe	,	26,9	29
Warendorf	Asbestzement (AZ)	11,0	43
(nur Ortsteil Vohren)	Grauguss (GG)	3,0	65
	duktiles Gusseisen (GGG)	0,7	5
	Polyethylen, hart (PEh)	0,8	29
	Polyvinylchlorid (PVC)	0,7	26
	Stahl (St)	0,4	7
Sum	16,6	29	

Tab. 13 Werkstoffverteilung, Leitungslängen und Durchschnittsalter im Trinkwasserverteilnetz der Wasserversorgung Beckum GmbH in den versorgten Städten und Gemeinden

Material (Originalbezeichnung)	Leitungslän- ge (km)	Ø Alter (a)
Asbestzement (AZ)	191,8	49
Grauguss (GG)	10,7	63
duktiles Gusseisen (GGG)	22,7	27
Polyethylen, hart (PEh)	126,8	24
Polyvinylchlorid (PVC)	623,8	34
Stahl (St)	19,1	18
Polyethylen (PE) 100	89,6	8
Polyethylen (PE) 80	8,9	13
Summe	1 093,4	30

Tab. 14 Werkstoffverteilung, Leitungslängen und Durchschnittsalter im gesamten Trinkwasserverteilnetz der Wasserversorgung Beckum GmbH

Die Gesamtlänge des Rohrnetzes beträgt 1 093 km. Das mittlere Rohralter der Leitungen liegt bei 30 Jahren.

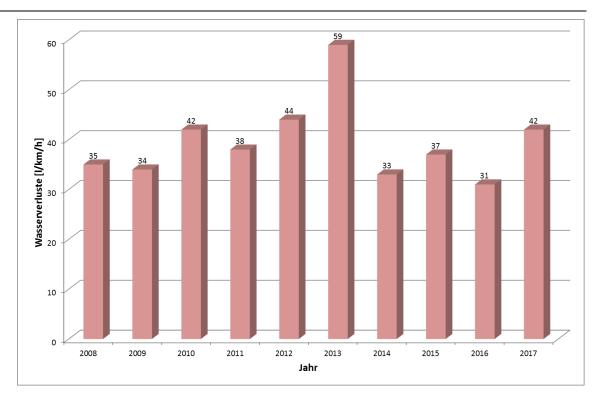


Abb. 17 Wasserverluste je km Netzlänge und Stunde

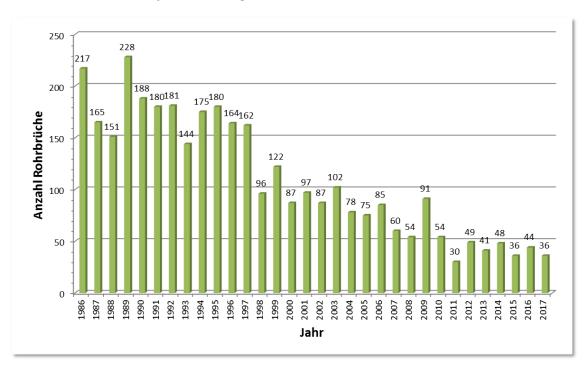


Abb. 18 Anzahl der Rohrbrüche pro Jahr im Verteilungsnetz

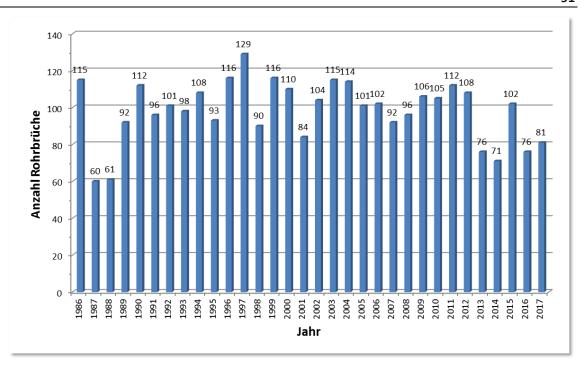


Abb. 19 Anzahl der Rohrbrüche pro Jahr im Hausanschlussbereich

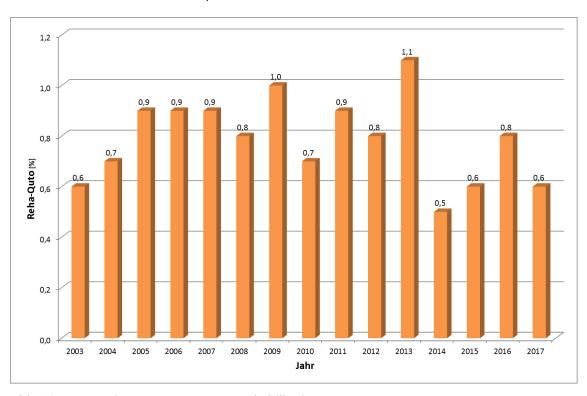


Abb. 20 Netzsanierung/-erneuerung (Rehabilitationsrate)

7.4 Wasserbehälter, Druckerhöhungs-/Druckminderungsanlagen

7.4.1 Anzahl und Fassungsvermögen der betriebenen Wasserbehälter im Versorgungsgebiet

Ziel der Wasserspeicherung ist die Gewährleistung der Versorgungssicherheit, sowohl in Zeiten hohen Wasserbedarfes, wie auch bei Ausfall von Anlagenteilen in der Wasserversorgung. Die Zuverlässigkeit der Druckerhöhungsstationen dient ebenfalls der Versorgungssicherheit.

Beschreibung der Anlagen

Druckerhöhungs- und Speicheranlage Beckum

- Speichervolumen 15 000 m³ in 2 oberirdischen Behältern
- Übernahmestation für Wasser von der GELSENWASSER AG
- Druckerhöhungsstation mit parallel geschalteten frequenzgeregelten Druckerhöhungspumpen
- Notstromaggregat zur Sicherung der Versorgung
- Überwachung von der Schalt- und Leitwarte (→ Verwaltung Beckum)

Druckerhöhungs- und Speicheranlage Ennigerloh

- Speichervolumen 4 000 m³ in zwei oberirdischen Behältern
- Druckerhöhungsstation mit drei parallel geschalteten frequenzgeregelten
 Druckerhöhungspumpen
- Überwachung und Steuerung von der Schalt- und Leitwarte (→ Verwaltung Beckum)
- keine Notstromversorgung

Druckerhöhungs- und Speicheranlage Oelde

- Speichervolumen 4 000 m³ in 2 oberirdischen Behältern
- Druckerhöhungsstation mit parallel geschalteten frequenzgeregelten
 Druckerhöhungspumpen für zwei Drucksysteme
- Überwachung von der Schalt- und Leitwarte (→ Verwaltung Beckum)
- Absicherung der Druckerhöhungsstation Stromberg
- Notstromaggregat zur Sicherung der Versorgung

Druckerhöhungs- und Speicheranlage Stromberg

- Speichervolumen 1 200 m³ in zwei oberirdischen Behältern
- Druckerhöhungsstation mit parallel geschalteten frequenzgeregelten
 Druckerhöhungspumpen für zwei Drucksysteme
- Überwachung von der Schalt- und Leitwarte (→ Verwaltung Beckum)
- keine Notstromversorgung

7.4.2 Anzahl der Druckzonen

Das Versorgungsgebiet der Wasserversorgung Beckum GmbH teilt sich in 14 Druckzonen.

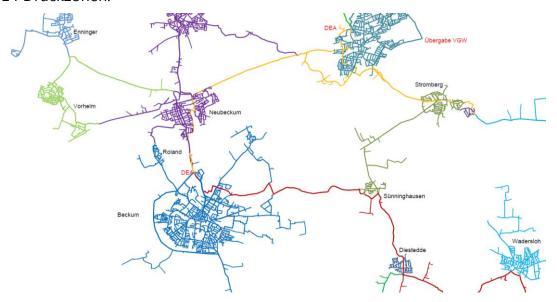


Abb. 21 Auszug aus dem Übersichtsplan mit Druckzonen der Wasserversorgung Beckum GmbH

7.4.3 Anzahl der betriebenen Druckerhöhungsanlagen im Versorgungsgebiet

Die Druckerhöhungsanlagen werden in Kombination mit den Speicheranlagen (siehe Abschnitt 7.4.1) betrieben.

7.4.4 Anzahl der betriebenen Druckminderungsanlagen im Versorgungsgebiet

Im Versorgungsgebiet der Wasserversorgung Beckum GmbH werden 17 Druckminderungsanlagen betrieben.

8 Gefährdungs-/Risikoanalyse – Schlussfolgerungen aus den Abschnitten 1 – 7

8.1 Identifizierung möglicher Gefährdungen

Der Kommune obliegt die Pflicht zur Sicherstellung der Trinkwasserversorgung ihrer Bevölkerung. Die Stadt Beckum hat diese Aufgabe bereits seit geraumer Zeit der Wasserversorgung Beckum GmbH übertragen. Dennoch ist die Stadt Beckum in letzter Instanz für die Gewährleistung der Wasserversorgung verantwortlich.

Das vorliegende Konzept dient dazu, dieser Pflicht nachzukommen und legt dar, dass die Versorgung mit Trinkwasser sowohl zum aktuellen Zeitpunkt als auch für die Zukunft gewährleistet ist.

Die Wasserversorgung erfolgt über drei verschiedene Wassergewinnungsanlagen: das Wasserwerk Vohren, den Wasserverband Aabach-Talsperre und durch die GELSENWASSER AG. Darüber hinaus verfügt das System über drei Notversorgungsleitungen zu verschiedenen benachbarten Versorgungsverbünden (siehe Abschnitt 6.1). Durch diese breite Aufstellung ist grundsätzlich gewährleistet, dass die Wasserversorgung auch bei dem Ausfall einer der drei Bezugsquellen weiterhin sichergestellt ist. Ein vollständiger Ausfall der gesamten Wasserversorgung Beckum GmbH wird daher mit einer äußerst geringen Gefährdungswahrscheinlichkeit bewertet.

Die Wassergewinnungsanlagen liegen jedoch allesamt außerhalb des Stadtgebiets von Beckum und zum großen Teil auch außerhalb des Versorgungsgebietes der Wasserversorgung Beckum GmbH. Daher hat die Stadt Beckum kaum Möglichkeiten, die Wasserqualität und -quantität zu steuern. Auf mögliche Gefährdungen für das Trinkwasser beispielsweise durch Bebauung, Verkehrsentwicklung, Altlasten oder Geothermie in den Trinkwassergewinnungsgebieten kann die Stadt Beckum keinen Einfluss nehmen.

Netz- und wasserwerksseitige Risiken

Seitens der Wasserversorgung Beckum GmbH ist eine Gefährdungsanalyse aufgestellt worden, welche die technischen Gefährdungen im Versorgungssystem erfasst und hinsichtlich der Risiken bewertet (siehe *Anlage 19*). Bei der Analyse wird folgende Prozesskette durchleuchtet:

- Wassergewinnung
- Wasseraufbereitung
- Wasserspeicherung
- Druckerhöhung/Pumpstationen
- Trinkwassernetz

Bei der Risikoabschätzung werden folgende Ziele auf Erfüllung beurteilt:

- gesundheitsbezogene Ziele
- ästhetische/sensorische Ziele
- versorgungstechnische Ziele

Die Gefährdungsanalyse fußt auf die DIN EN 15975-2:2015. Sie wird direkt bei Änderungen in der oben aufgeführten Prozesskette, mindestens aber jährlich, auf Aktualisierungen geprüft und bei erforderlichem Bedarf angepasst.

Der Umgang mit den Gefährdungen/Risiken ist mit einer managementbasierten Ordnung verankert und umfasst folgende Elemente:

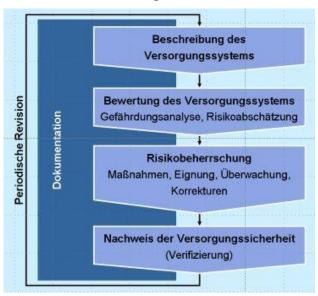


Abb. 22 Schematischer Ablauf der Gefährdungs-/Risikoanalyse

Die Gefährdungen entlang der Prozesskette sind in der **Anlage 19** aufgelistet und innerhalb einer Matrix geclustert. Die Risikoabschätzung erfolgt nach folgender Methodik:

			Schadensausmaß						
Risiko	bewertun	g	gering	hoch					
			I	II	III				
chein-	gering	А	sehr niedriges Risiko	niedriges Risiko	mittleres Risiko				
swahrs	mittel	В	niedriges Risiko	mittleres Risiko	hohes Risiko				
Eintrittswahrschein- lichkeit	hoch	С	mittleres Risiko	hohes Risiko	sehr hohes Risiko				

Tab. 15 Matrix für die Risikoabschätzung

Die Risikoabschätzung erfolgt ausschließlich unter der Berücksichtigung der bereits getroffenen in der Matrix ausgewiesenen Schutzmaßnahmen. Ohne Berücksichtigung dieses Ansatzes würden die jeweiligen Gefährdungen in der Regel mit einem hohen Risiko bewertet werden.

Für die Gefährdungskategorien die mit einem hohen und sehr hohen Risiko bewertet worden sind, ist ein Handlungsbedarf abzuleiten. Dieser umfasst zusätzliche Maßnahmen zur weitergehenden Verringerung des Risikos.

Die Umsetzung erfolgt entsprechend einer Priorisierung. Nach Umsetzung der festgelegten Maßnahmen ist die Wirksamkeit zu überprüfen.

Wassergewinnungsgebiet

Die Hauptversorgung wird durch das Wasserwerk Vohren sichergestellt. Das zugehörige Wasserschutzgebiet ist größtenteils land- und forstwirtschaftlich geprägt, es befinden sich kaum Siedlungen, Industrie- und Gewerbebetriebe darin. Einträge ins Grundwasser sind daher vornehmlich in Form von Dünge- und Pflanzenschutzmittelrückständen möglich.

Auch die im Schutzgebiet verlaufenden Fließgewässer haben eine Auswirkung auf das dort gewonnene Trinkwasser und können über das Uferfiltrat zu unerwünschten Einträgen von Nähr- und/oder Spurenstoffen beitragen.

Löschwasserentnahme

Die Löschwasserversorgung wird im Stadtgebiet Beckum über das Trinkwassernetz unterstützt. Die Entnahme erfolgt über Hydranten. Es besteht die Gefahr, dass durch die Entnahme verunreinigtes Wasser in das Trinkwassernetz zurückfließen kann. Diese Gefahr ist zwar nur sehr gering, kann aber ein hohes Schadensausmaß erreichen.

Klimawandel

Der Klimawandel zeigt sich schon jetzt sehr deutlich, sowohl durch vermehrte Starkregenereignisse mit Gefahr von Hochwasser und Sturzfluten, als auch durch intensivere Trockenperioden. Die Wasserkontingente der Wasserversorgung Beckum an der Aabach-Talsperre wurden in den letzten Jahren bereits häufiger aufgrund von Niedrigwasserständen eingeschränkt. Dennoch birgt dies aktuell keine Gefahr für die Wasserversorgung, da diese Schwankungen durch die anderen beiden Trinkwasserbezüge (Wasserwerk Vohren und GELSENWASSER AG) aufgefangen werden können.

Auch besteht keine aktuelle Gefährdung durch Hochwasser oder Sturzfluten. Die Einrichtungen der Wasserversorgung Beckum auf Beckumer Stadtgebiet liegen außerhalb der Überschwemmungs- und Risikogebiete.

Vorsätzliche Manipulation

Die Stadt Beckum sieht durchaus eine Möglichkeit in der vorsätzlichen Manipulation der Trinkwasserversorgung durch biologische oder chemische Stoffe zur bewussten Schädigung der Gesundheit der Verbraucher. Die Wahrscheinlichkeit ist zwar recht gering, das Schadenspotential wird als sehr hoch eingeschätzt.

8.2 Entwicklungsprognose Gefährdungen

Wassergewinnungsgebiet

Die Gefahr der Grundwasserverunreinigung durch Dünge- und Pflanzenschutzmittel ist auch mittel- und langfristig von Belang. Gerade unter dem Gesichtspunkt der zunehmenden Gefahr von erhöhten Stickstoffeinträgen kann dies in Zukunft zu erhöhten Belastungen führen.

Der Eintrag von Nähr- und/oder Spurenstoffen durch Oberflächengewässer wird sich mit der sukzessiven Umsetzung der Wasserrahmen-Richtlinie im gesamten Einzugsgebiet voraussichtlich langfristig reduzieren.

Löschwasserentnahme

Für die Wasserversorgung Beckum GmbH hat die Sicherstellung der Trinkwasserversorgung und -hygiene Vorrang vor der Löschwasserentnahme. Für die Stadt Beckum hat die Bereitstellung von Löschwasser jedoch einen ebenso hohen Stellenwert. Bisher kann auf Basis des Wasserliefervertrages beides sichergestellt werden. Doch insbesondere in Gewerbegebieten stellt sich die Vorhaltung großer Durchmesser bei sehr niedrigem Normalverbrauch als eine Schwierigkeit dar. Dies kann in Zukunft dazu führen, dass die Wasserversorgung Beckum GmbH in diesen Gebieten eine ausreichende Menge an Löschwasser gemäß DVGW-Arbeitsblatt W 405 nicht grundsätzlich zur Verfügung stellen kann.

Klimawandel

Der Klimawandel wird sich in Zukunft weiter verstärken. Die Folgen und Beeinträchtigungen für die Wasserversorgung können Abschnitt 4.3 entnommen werden. Die Gefahr einer Einschränkung der Trinkwasserversorgung infolge von Trockenheit wird jedoch als gering erachtet, da die Versorgung durch 3 verschiedene Trinkwasserbezüge sichergestellt wird.

Vorsätzliche Manipulation

Die Gefährdung des Trinkwassernetzes durch Vandalismus beziehungsweise Sabotage wird auch langfristig weiterhin bestehen. Darüber hinaus wird die Gefahr durch eine digitale Manipulation der Wasserversorgung voraussichtlich zunehmen.

9 Maßnahmen zur langfristigen Sicherung der öffentlichen Wasserversorgung

Der Identifizierung der möglichen Gefährdungen für das Wasserversorgungssystem in Abschnitt 8 wird mit einer Reihe von Maßnahmen begegnet, die im Folgenden dargelegt werden.

Da im Stadtgebiet Beckum selbst nicht ausreichend Trinkwasser gewonnen werden kann (*siehe Anlage 10*), besteht auch weiterhin keine direkte Möglichkeit der Beeinflussung der Trinkwassergewinnungsgebiete. Daher ist es von besonderer Wichtigkeit, das Versorgungssystem wie bisher auf mehrere Trinkwasserbezugsquellen zu stützen. Als Gesellschafter der Wasserversorgung Beckum GmbH wird die Stadt Beckum daher auf eine vielseitige Versorgung besonders achten. Zugleich kann somit die Gefahr eines vollständigen Ausfalls der gesamten Wasserversorgung weiterhin entgegengewirkt werden.

Netz- und wasserwerksseitige Risiken

Die Maßnahmen seitens der Wasserversorgung Beckum GmbH sind in der unter Abschnitt 8 genannten **Anlage 19** (Risikoabschätzung nach DIN EN 15975-2:2016) integriert.

Wassergewinnungsgebiet

Um im Wassergewinnungsgebiet Vohren den Eintrag von Nähr- und Schadstoffen ins Grundwasser zu reduzieren, besteht im Kreis Warendorf eine Kooperation zwischen den Wasserversorgungsunternehmen und der Landwirtschaft. Diese Kooperation hat sich zum Ziel gesetzt, auf freiwilliger Basis grundwasserschonende Maßnahmen zur Reduzierung möglicher Dünge- und Spritzmitteleinträge, insbesondere Nitrat, durchzuführen. Im Wasserschutzgebiet sind nahezu flächendeckend alle Landwirte an der Kooperation beteiligt. Sie erhalten leistungsorientiert Entschädigungen für Ertragseinbußen. Die Kooperation wird beratend unterstützt durch die Bezirksregierung Münster sowie das Gesundheitsamt und die Untere Wasserbehörde des Kreises Warendorfes (siehe Abschnitt 5.2.1).

Im Hinblick auf die Gefahr von diffusen Einträgen durch Fließgewässer hat eine einzelne Kommune lediglich mittelbar Möglichkeiten der Einflussnahme. Die Stadt Beckum führt seit 2001 Maßnahmen zur ökologischen Entwicklung sowie zum Hochwasserschutz gemäß WRRL an verschiedenen Gewässern im Stadtgebiet durch. Ein Maßnahmengebiet gehört zum Einzugsgebiet des Axtbaches, der im Wassergewinnungsgebiet Vohren in die Ems mündet. Die bereits durchgeführten Maßnahmen dienen der Wiederherstellung von Auengebieten und stärken die Selbstreinigungskräfte des Gewässers. Dadurch verbessert sich sowohl die Wasserqualität als auch der Hochwasserschutz für den gesamten unterliegenden Bereich und somit auch für das Wasserwerk Vohren.

Die Maßnahmen an den anderen Gewässern (Einzugsgebiet Werse) haben keinen mittelbaren Einfluss auf die eigene Trinkwasserversorgung, sie tragen aber

zur Verbesserung für alle weiteren Unterlieger bei, wenn auch nur in sehr geringem Maße. Auch in den nächsten Jahren werden sukzessive weitere Gewässerentwicklungsmaßnahmen durchgeführt.

Löschwasserversorgung

Um einen Rückfluss von Löschwasser ins Trinkwassernetz an Hydranten zu verhindern, sind Standrohre mit sogenannten Systemtrennern erforderlich. Die Feuerwehr Beckum tauscht die alten Standrohre sukzessive gegen die neuen Standrohre mit Systemtrennern aus. Die Wasserversorgung Beckum verfügt ebenfalls über Standrohre, die bei Bedarf verliehen werden. Diese sind bereits vollständig mit Systemtrennern ausgestattet.

Um den Interessensausgleich zwischen Trink- und Löschwasserentnahme dauerhaft sicher zu stellen, sind seitens der Stadt Beckum folgende Maßnahmen vorgesehen:

- Seit 2013 wird der Löschwasserbedarf in Bebauungsplänen rechtssicher geregelt. Bei zukünftigen Planungen zu Wohnungs-, Gewerbe- und Industriegebieten werden sowohl die Wasserversorgung Beckum GmbH als auch die Feuerwehr Beckum frühzeitig in den Planungsprozess eingebunden.
- Wenn eine Sicherstellung beider Bedarfe nicht möglich ist, müssen frühzeitig Alternativen entwickelt werden, beispielsweise ein Lehrrohrsystem ausschließlich zur Deckung des Löschwasserbedarfs.
- Für die Feuerwehr Beckum ist die Beschaffung von zwei Tankfahrzeugen mit einer Löschwasserkapazität von jeweils 12.000 I sowie 2 mobilen, faltbaren Wasserspeichern vorgesehen. Dadurch erhöht sich die vorgehaltene Erstschlagmenge an Löschwasser auf rund 35 m³. Hierdurch wird die allgemein geltende und als ausreichend angesehene Erstschlagmenge von 30 m³ bereits übertroffen. Zugleich können mittels dieser Löschwasserbevorratung auch Einsätze in Bereichen mit mangelnder Löschwasserabdeckung sowie bei einem Ausfall der Infrastruktur für Löschwasser als auch für Brauchwasser erfolgen.
- Bei Engpässen und Versorgungslücken beispielsweise bei einem kurzfristigen Ausfall der Trinkwasserversorgung soll eine intensive Abstimmung mit der Wasserversorgung Beckum GmbH erfolgen.

Klimawandel

Die technischen Maßnahmen zum Umgang mit den Folgen des Klimawandels können der Tabelle in **Anlage 19** entnommen werden.

Um den Klimawandel grundsätzlich einzudämmen, ist letztendlich die gesamte Weltgemeinschaft gefragt. Jede einzelne Kommune kann ihren Beitrag dazu leisten.

Die Stadt Beckum ist als eine von bundesweit 22 Landkreisen und Kommunen in das Förderprogramm "Masterplan 100 Prozent Klimaschutz" aufgenommen worden. Ziel ist die Reduktion der Treibhausgase um 95 Prozent sowie der End-

energie um 50 Prozent bis zum Jahr 2050 im Vergleich zum Jahr 1990. Ein Bestandteil des Masterplans ist unter anderem auch die Klimafolgenanpassung. Dazu zählen Maßnahmen im Hochwasserschutz sowie Vorsorge für Extremniederschläge und Sturzfluten.

Vorsätzliche Manipulation

Die Anlagen der Wasserversorgung Beckum GmbH sind durch ausreichenden Gebäude- und Objektschutz vor unbefugtem Zutritt gesichert. Darüber hinaus besteht jedoch eine Anzahl weiterer Möglichkeiten, das System zu infiltrieren und mit Schadstoffen zu verunreinigen. Aktuell sieht die Stadt Beckum keine umsetzbare Lösung zur effizienten Gefahrenabwehr.

Im Hinblick auf eine digitale Manipulation des Versorgungssystems ist es erforderlich, dass die Wasserversorgung Beckum GmbH den jeweils aktuellen IT Sicherheitsstandard vorhält.

Notfall- und Risikomanagement

Am 03.04.2018 hat die Stadt Beckum einen Stab für außergewöhnliche Ereignisse (SAE) gebildet. Dieser Stab ist dazu da, alle administrativ-organisatorischen Maßnahmen zu ergreifen, um in Notfallsituationen ein rasches und koordiniertes Handeln zur Behebung der Gefahrenlage zu ermöglichen. Außergewöhnliche Ereignisse können beispielsweise durch extreme Wetterlagen, Unfälle, Anschläge auf private oder öffentliche Einrichtungen als auch Stromausfall oder Krankheiten verursacht werden. Gemäß Punkt 4.2 der Dienstanweisung SAE können je nach Sachverhalt externe Fachleute (zum Beispiel Mitarbeiter der Wasserversorgung Beckum GmbH) zum Stab hinzugezogen werden.

Somit ist bei einem großflächigen Ausfall oder einer umfangreichen Beeinträchtigung der Trinkwasserversorgung die Grundlage für ein effizientes Krisenmanagement gelegt.

Im Krisenfall können die Tankfahrzeuge und Wasserspeicher der Feuerwehr bei der Notversorgung der Bevölkerung mit Brauchwasser eingesetzt werden. Eine flächendeckende Versorgung wird die Feuerwehr allerdings nicht leisten können. Das Hauptaugenmerk zur Versorgung mit Trinkwasser wird jedoch auf die Beschaffung von Flaschenwasser gelegt. Zusätzlich können die im Stadtgebiet befindlichen, grundwassergespeisten Seen (siehe Abschnitt 4.1.2) auf ihre Wasserqualität hin untersucht werden, um sie bei Bedarf für die Versorgung zu nutzen.

Sollte die Trinkwasserversorgung in so großem Maße beeinträchtigt sein, dass die Koordinierung des Geschehens zur Gefahrenabwehr nicht mehr von einer einzelnen Kommune gewährleistet werden kann, greift das Gesetz über den Brandschutz, die Hilfeleistung und den Katastrophenschutz (BHKG) des Landes Nordrhein-Westfalens. Demgemäß gibt es für den Kreis Warendorf einen Katastrophenschutzplan, der aktuell neu aufgelegt wird.

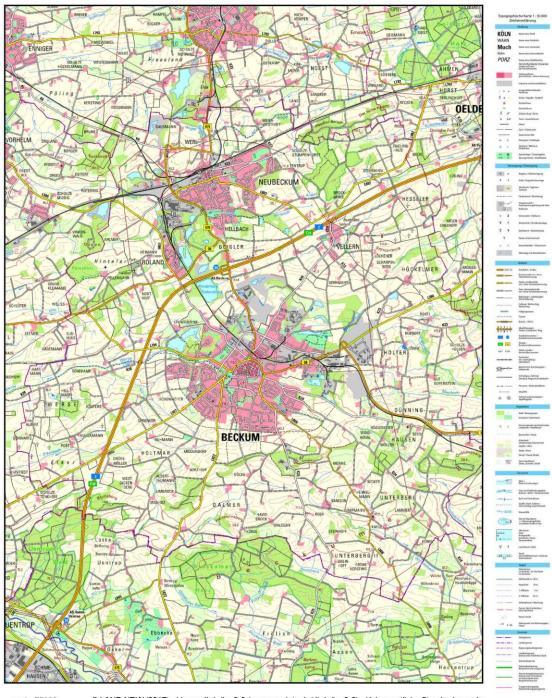
10			٠,										•	•
10	Αl	่อ่อ	Ш	d	u	n	qs	ve	rz	eı	CI	nı	n	IS

Abb. 1	Bevölkerungsentwicklung in den Städten und Gemeinden im Versorgungsgebiet der Wasserversorgung Beckum GmbH; Datenbasis: Stadt- und Regionalplanung Dr. Jansen GmbH (für die Stadt Beckum), IT.NRW, Düsseldorf – Gemeindemodellrechnung 2014-2040 (für die Städte Oelde und Ennigerloh sowie für die Gemeinden Wadersloh, Lippetal, Langenberg, Beelen und Bad Sassendorf), Zahlen für die Städte Rheda-Wiedenbrück und Ahlen geschätzt	3
Abb. 2	Versorgungsgebiet der Wasserversorgung Beckum GmbH mit Übergabepunkten für den Wasserbezug und die Wasserabgaben	4
Abb. 3	Entwicklung der Wasserversorgung Beckum	12
Abb. 4	Organisationsstruktur bei der Wasserversorgung Beckum GmbH	13
Abb. 5	Trinkwasserabgabe im Zeitraum 1990-2017	18
Abb. 6	Entwicklung der Rohwasserförderung von 1990-2017	19
Abb. 7	Entwicklung des Trinkwassereigenbedarfs im Wasserwerk Vohren von 2007-2017	20
Abb. 8	Entwicklung der Wasserverluste der Wasserversorgung Beckum GmbH von 2007-2017	21
Abb. 9	Grundwasserfließrichtung mit dem unterirdischen Einzugsgebiet der Brunnen (dunkelgrüne Umrandung) und dem oberirdischen Einzugsgebiet des Teufelsbaches (dunkelgrün gestrichelte Linie)	23
Abb. 10	Tiefenlage der Quartärbasis in m über NHN (Ausschnitt aus der Geologischen Karten von Nordrhein-Westfalen: 1 : 25.000, Blatt 4014 Sassenberg)	27
Abb. 11	Anzahl der Tage mit einem Lufttemperatur-Maximum über 30 °C (Gebietsmittel) im Münsterland; Quelle: Deutscher Wetterdienst	31
Abb. 12	Abweichung der globalen Lufttemperatur vom Durchschnitt 1961- 1990 (Referenzperiode) im Münsterland; Quelle: Met Office Hadley Centre	31
Abb. 13	Beeinflussung der multiplen Stressoren durch den Klimawandel; Quelle: IWW, Mülheim an der Ruhr	33
Abb. 14	Übersichtskarte mit den Messstellen für die Rohwasserüberwachung des Wasserwerkes Vohren	36
Abb. 15	Auszug aus dem Rohrnetzerneuerungsplan der Wasserversorgung Beckum GmbH	42

Abbildungsverzeichnis

	_	
- 6	า	/
•		_

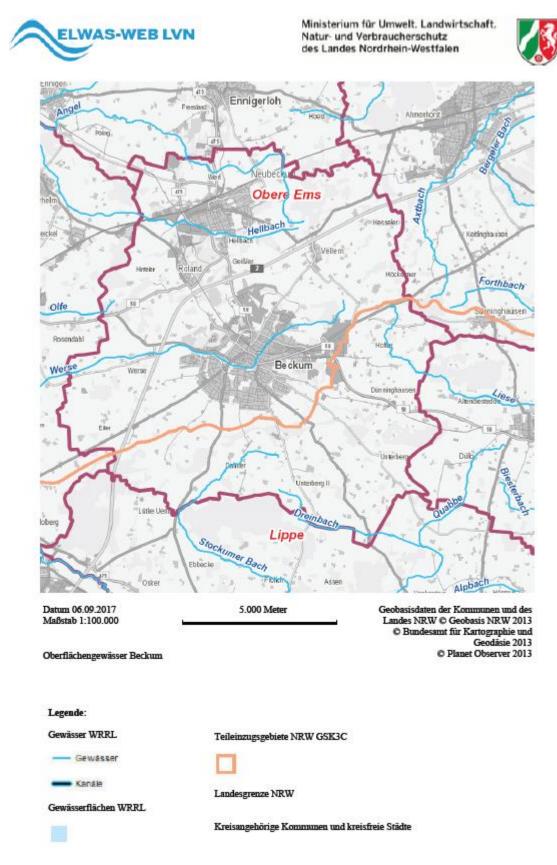
Abb. 16	Auszug aus dem Löschwassermengenplan der Wasserversorgung	
	Beckum GmbH	44
Abb. 17	Wasserverluste je km Netzlänge und Stunde	50
Abb. 18	Anzahl der Rohrbrüche pro Jahr im Verteilungsnetz	50
Abb. 19	Anzahl der Rohrbrüche pro Jahr im Hausanschlussbereich	51
Abb. 20	Netzsanierung/-erneuerung (Rehabilitationsrate)	51
Abb. 21	Auszug aus dem Übersichtsplan mit Druckzonen der Wasserversorgung Beckum GmbH	53
Abb. 22	Schematischer Ablauf der Gefährdungs-/Risikoanalyse	55


11	Tabellenverzeichnis	
Tab. 1	Flächennutzungsanteile im Stadtgebiet Beckum; Quelle: Landesdatenbank NRW	1
Tab. 2	Anzahl der Hausanschlüsse im Versorgungsgebiet der Wasserversorgung Beckum GmbH nach Stadt- und Stadtteilen	8
Tab. 3	Bewilligtes Recht auf Grundwasserförderung für das Wasserwerk Vohren	14
Tab. 4	Abgabemengen des Wasserwerks Vohren und Wasserbezug	15
Tab. 5	Wasserlieferverträge	16
Tab. 6	Tages-/Stundenabgaben für den Zeitraum 2012-2017	18
Tab. 7	Berechnung des zukünftigen Bedarfs im Zeitraum 2018-2027	22
Tab. 8	Größe der Wasserschutzgebietszonen	26
Tab. 9	Grundwasserneubildung in den Wassergewinnungsgebieten Vohren und Dackmar nach Nutzung	29
Tab. 10	Übernahme- und Übergabestationen für Trinkwasser und Notversorgung	41
Tab. 11	Ergebnisse aus der Löschwasserberechnung	45
Tab. 12	Statische Auswertung der Verteilung der Fließgeschwindigkeiten bei heutigem Normalbedarf	46
Tab. 13	Werkstoffverteilung, Leitungslängen und Durchschnittsalter im Trinkwasserverteilnetz der Wasserversorgung Beckum GmbH in den versorgten Städten und Gemeinden	49
Tab. 14	Werkstoffverteilung, Leitungslängen und Durchschnittsalter im gesamten Trinkwasserverteilnetz der Wasserversorgung Beckum GmbH	49
Tab. 15	Matrix für die Risikoabschätzung	55

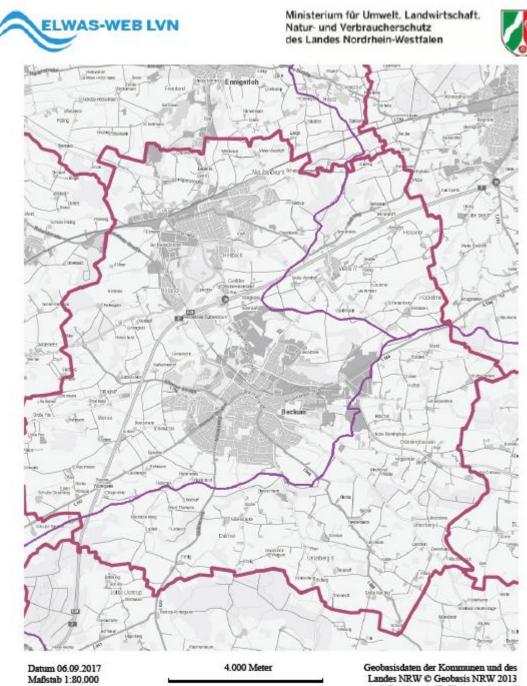
12 Anlagen

Anlage 1 Übersichtskarte der Stadt Beckum

Stadtgebiet Beckum, Topographische Karte DTK 50


www.tim-online.nrw.de

ca. 1 : 75000 © LAND NRW (2017) - Lizenz dl-de/by-2-0 (www.govdata.de/dl-de/by-2-0) - Keine amtliche Standardausgabe Für Geodaten anderer Quellen gelten die Nutzungs- und Lizenzbedingungen der jeweils zugrundeliegenden Dienste


Quelle: Stadt Beckum

Anlage 2 Übersichtskarte der Oberflächengewässer im Stadtgebiet Beckum

Quelle: ELWAS WEB LVN

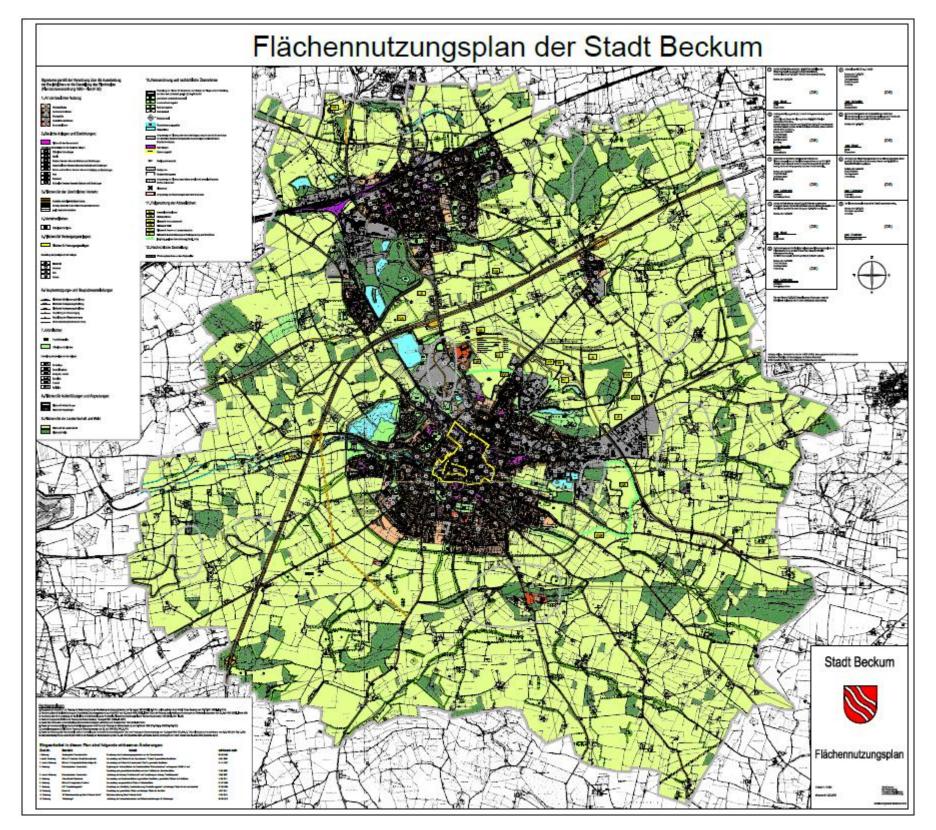
Anlage 3 Übersichtskarte der Grundwasserkörper im Stadtgebiet Beckum

Stadtgebiet Beckum: Grundwasserkörper

Geobasisdaten der Kommunen und des Landes NRW © Geobasis NRW 2013 © Bundesamt für Kartographie und Geodäsie 2013 © Planet Observer 2013

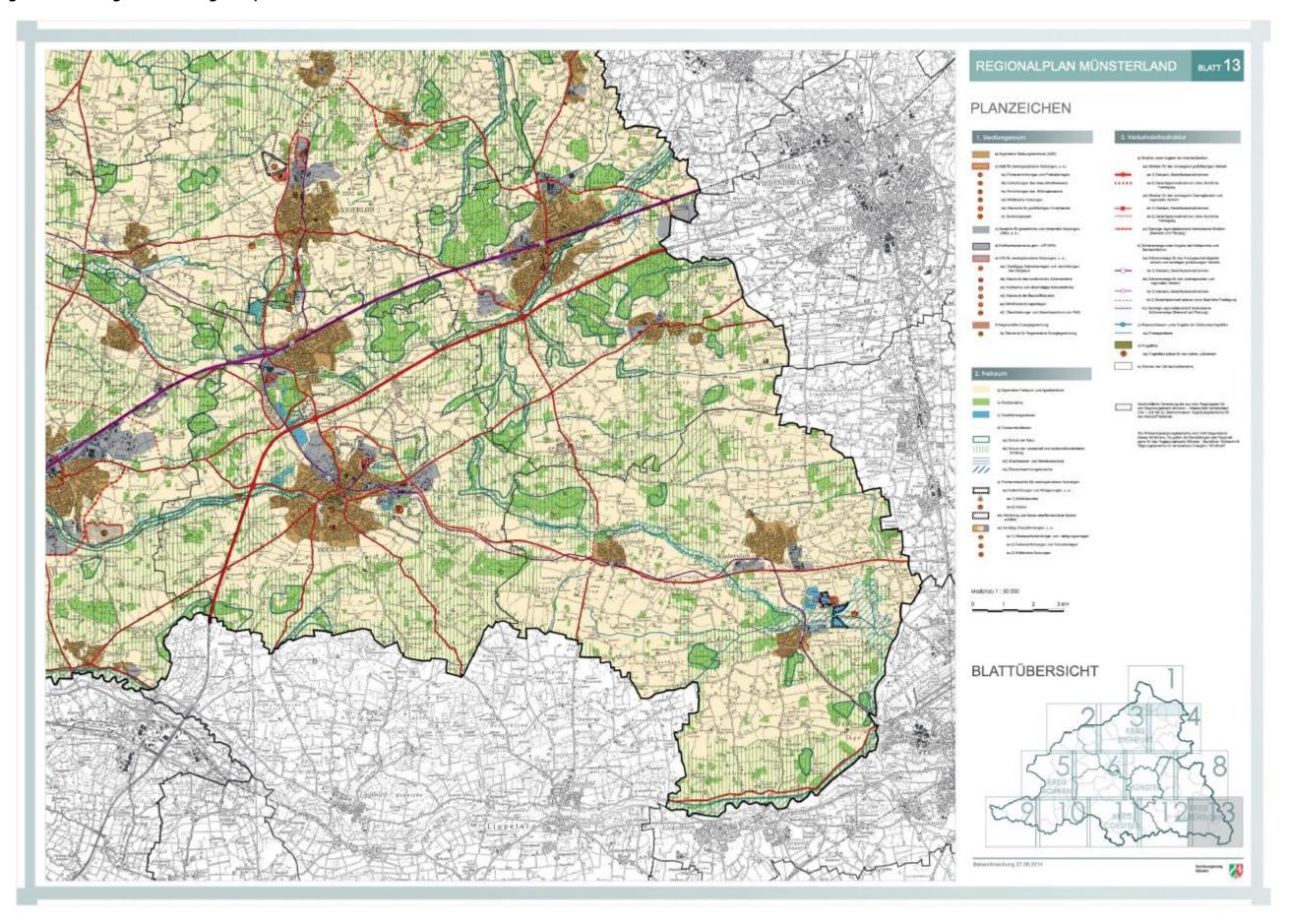
Legende:

Landesgrenze NRW

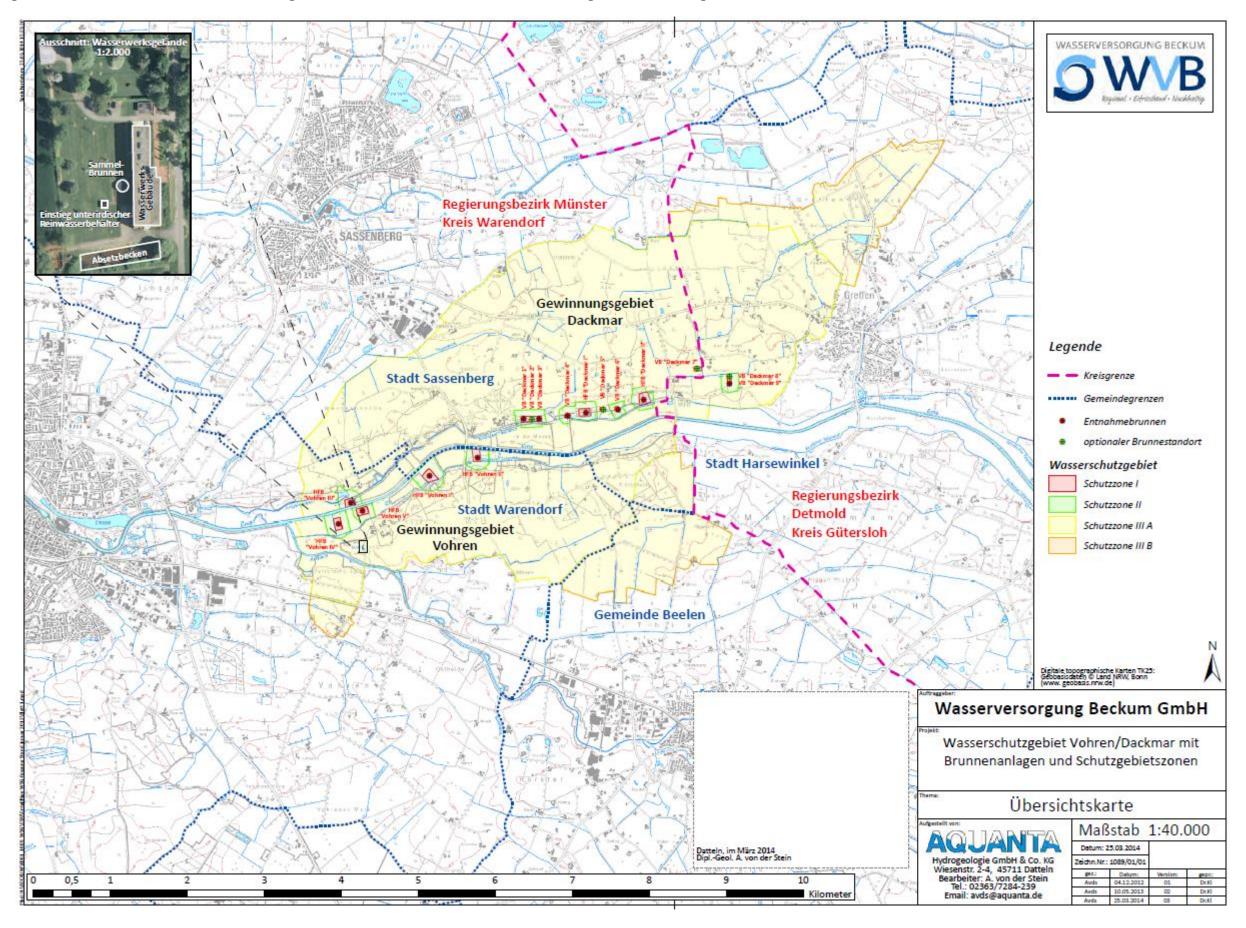

Kreisangehörige Kommunen und kreisfreie Städte

Grundwasserkörper

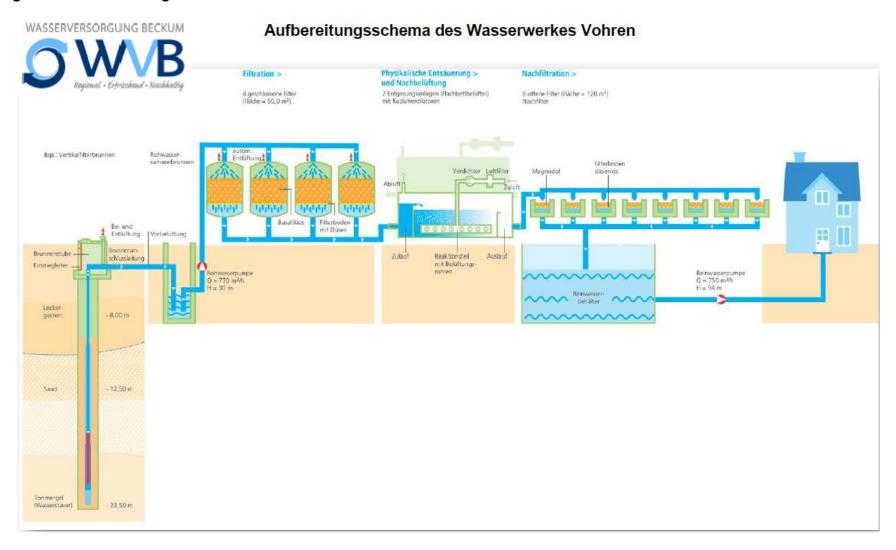
✓ Grundwasserkörper


Quelle: ELWAS WEB LVN

Anlage 4 Flächennutzungsplan der Stadt Beckum



Quelle: Stadt Beckum

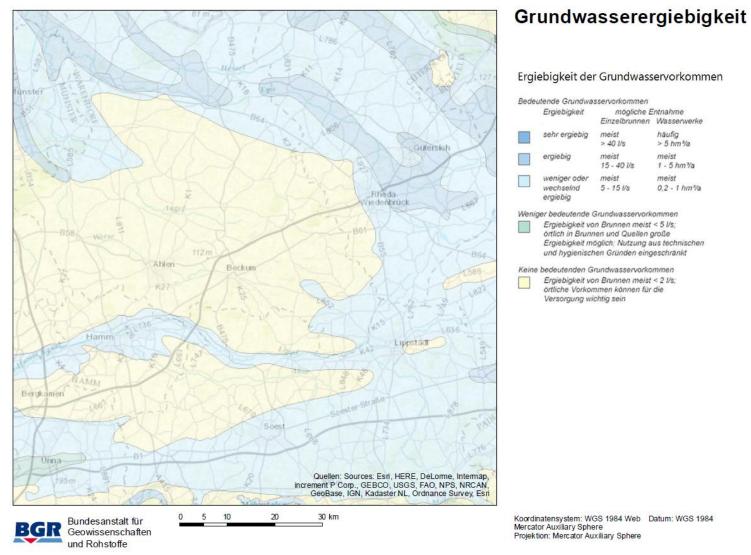

Anlage 5 Auszug aus dem Regionalplan Münsterland, Blatt 13

Anlage 6 Übersichtskarte Wasserschutzgebiet Vohren/Dackmar mit Brunnenanlagen und Schutzgebietszonen

Anlage 7 Aufbereitungsschema des Wasserwerkes Vohren

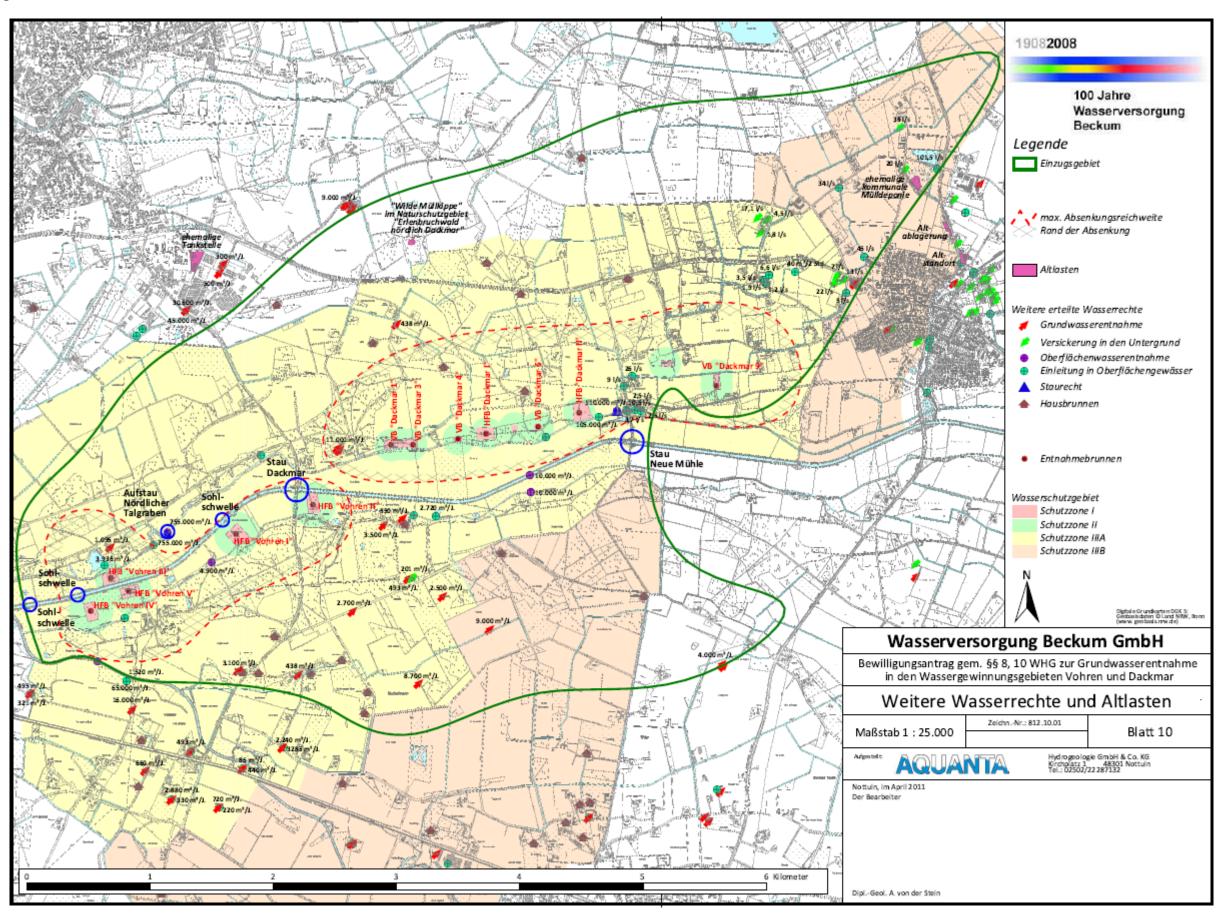
Anlage 8 Dezentrale Anlagen und Kleinanlagen zur Eigenversorgung in der Stadt Beckum

Daten des Gesundheitsamtes Warendorf zur Trinkwassereige Aufstellung eines Wasserversorgungskonzeptes (§ 38 LWG N Stadt Beckum Grundlage: Erlass "Wasserversorgungskonzept nach § 38 Absa MKULNV mit der Anlage "Gliederung Wasserversorgungskonz Angaben zu 2.2 und 5.2 der Anlage	IRW) im Jahr 2017 für die stz 3 LWG" vom 11.04.2017 des
(2.2) Gebiet	Beckum
(2.2) Summe der beim Gesundheitsamt Warendorf erfassten dezentralen kleinen Wasserwerke ("b-Anlagen") und Kleinanlagen zur Eigenversorgung ("c-Anlagen") zum 31.12.2016	369
(2.2) Lage der dezentralen kleinen Wasserwerke und Kleinanlagen zur Eigenversorgung	überwiegend im Außenbereich
(5.2) Wesentliche Auffälligkeiten in der Beschaffenheit des Trinkwassers der Eigenversorgung:	
Parameter Nitrat	
Gesamtanzahl der Nitratuntersuchungen im Zeitraum der Jahre 2014-2016 (bei einem in der Regel 3-jährigen Untersuchungsintervall)	394
Anzahl der Nitratuntersuchungen mit Grenzwertüberschreitung (> 50 mg/l) im Zeitraum der Jahre 2014-2016	9
Anteil der Grenzwertüberschreitungen an der Gesamtanzahl der Nitratuntersuchungen in %	2
Anzahl der Wasserversorgungsanlagen, die von (mindestens) einer Nitratgrenzwertverletzung im Untersuchungszeitraum 2014-2016 betroffen sind	8
MinWert Nitrat (mg/l) im Untersuchungszeitraum 2014-2016	< 0,1
MaxWert Nitrat (mg/l) im Untersuchungszeitraum 2014-2016	88
Parameter Mikrobiologie (E.coli, Coliforme, Enterokokken)	
Gesamtanzahl der mikrobiologischen Untersuchungen im Jahr 2016 (bei einem in der Regel 1-jährigen Untersuchungsrhythmus)	425
Anzahl der mikrobiologischen Untersuchungen mit Grenzwertüberschreitungen (> 0 KBE/100ml) im Jahr 2016	89
Anteil der Grenzwertüberschreitungen an der Gesamtanzahl der mikrobiologischen Untersuchungen in %	21
Anzahl der Wasserversorgungsanlagen die von (mindestens) einer mikrobiologischen Grenzwertverletzung im Untersuchungszeitraum 2016 betroffen sind.	74

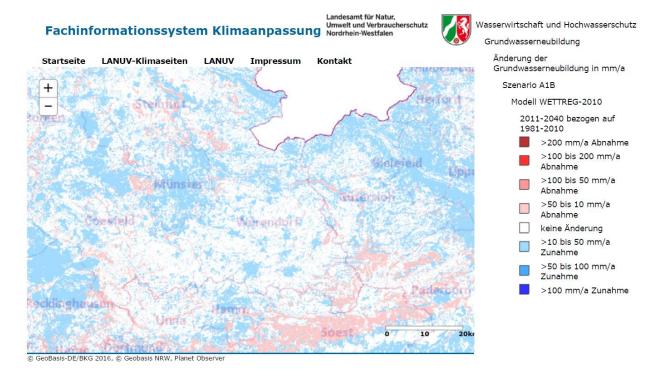

Quelle: Gesundheitsamt Warendorf

Anlage 9 Wasserbedarfsprognose 2015-2027

Wasserbedarfsprognose (2015-2027)


0. Rohwasserförderung (in m³)	2015	2016	Bevölker ung sent- wicklung 2017	2017	Bevölker ung sent- wicklung 2018	2018	Bevölker ung sent- wicklung 2019	2019	Bevölker ung sent- wicklung 2020	2020	Bevölkerungsent- wicklung 2021	2021	Bevölker ung sent- wicklung 2022	2022	Bevölker ung sent- wicklung 2023	2023	Bevölker ung sent- wicklung 2024	2024	Bevölkerungsent- wicklung 2025	2025	Bevölker ung sent- wicklung 2026	2026	Bevölkerungsent- wicklung 2027	2027
Rohwasserförderung Wwk. Vohren (WGG Vohren, Dackmar)	5.885.114	6.068.720		5.918.027				- 1																
Eigenbedarf Wasserwerk (Rückspülwasser etc.)	78.375	122.903		121.277																				
A. Trinkwasserbezug (in m³)																								
1. Wasserwerk Vohren	5.806.739	5.945.817		5.796.750																				
2. Wasserverband Aabach-Talsperre	2.274.504	2.273.277		1.761.564				- 1																
3. Gelsenwasser AG	1.922.777	2.214.327		3.459.181																				
Summe Trinkwasserbezug (A.)	10.004.020	10.433.421		11.017.495																				
B. Trinkwasserabgabe (in m³)																								
1. Lieferung an andere WVU																								
Stadtwerke Warendorf GmbH	269.642	402.806		375.024		280.000		300.000		300.000		320.000		320.000		350.000		350.000		370.000		380.000		380.000
Gemeindewerke Everswinkel GmbH	134.166	90.979		120.560	[100.000		110.000		100.000		100.000		100.000		120.000	[120.000		100.000		100.000		100.000
Wasserbeschaffungsverband Sassenberg-Versmold-Warendorf	762.261	822.004		836.827	[800.000		790.000		780.000		780.000		800.000		820.000	. [820.000		830.000		830.000		830.000
Wasserbeschaffungsverband Osnabrück-Süd	592.160	728.723		817.442	[820.000		850.000		1.100.000		1.100.000		1.100.000		1.500.000	[1.500.000		1.500.000		1.600.000		1.600.000
Vereinigte Gas- u. Wasserversorgung GmbH Rheda-Wiedenbrück	1.891.915	1.859.527		2.289.255	[2.300.000		2.200.000		2.200.000		2.300.000		2.300.000		2.400.000	. [2.400.000		2.450.000		2.450.000		2.450.000
Summe Lieferung an andere WVU (B.1.)	3.650.144	3.904.039		4.439.108		4.300.000		4.250.000		4.480.000		4.600.000		4.620.000		5.190.000		5.190.000		5.250.000		5.360.000		5.360.000
2. Städte/Gemeinden (Tarifkunden)																								
Ahlen (nur Vorhelm, Tönnishäuschen)	138.992	142.998	1,5%	145.143	0,0%	145.143	-0,1%	144.998	-0,1%	144.853	-0,2%	144.563	-0,2%	144.274	-0,2%	143.985	-0,2%	143.697	-0,2%	143.410	-0,2%	143.123	-0,2%	142.837
Bad Sassendorf (nur Weslarn, Ostinghausen, Bettinghausen)	109.364	110.793	-0,3%	110.461	0,1%	110.571	-0,1%	110.461	-0,1%	110.350	0,0%	110.350	-0,2%	110.129	0,0%	110.129	-0,2%	109.909	-0,1%	109.799	-0,1%	109.689	-0,2%	109.470
Beckum	1.790.130	1.868.579	0,3%	1.874.185	0,3%	1.879.807	0,3%	1.885.447	0,1%	1.887.332	0,1%	1.889.219	-0,1%	1.887.330	0,0%	1.887.330	-0,1%	1.885.443	-0,1%	1.883.557	-0,2%	1.879.790	-0,1%	1.877.911
Beelen	242.230	245.376	-4,1%	235.316	-0,2%	234.845	-0,4%	233.906	-0,2%	233.438	-0,4%	232.504	-0,3%	231.806	-0,4%	230.879	-0,4%	229.956	-0,3%	229.266	-0,3%	228.578	-0,4%	227.664
Ennigerloh	844.789	897.148	-0,4%	893.559	-0,4%	889.985	-0,4%	886.425	-0,4%	882.880	-0,4%	879.348	-0,5%	874.951	-0,4%	871.451	-0,5%	867.094	-0,4%	863.626	-0,4%	860.171	-0,5%	855.870
Langenberg	274.077	286.158	-0,2%	285.586	-0,1%	285.300	-0,4%	284.159	-0,2%	283.591	-0,3%	282.740	-0,3%	281.892	-0,4%	280.764	-0,3%	279.922	-0,3%	279.082	-0,4%	277.966	-0,4%	276.854
Lippetal	576.570	593.829	-0,3%	592.048	-0,2%	590.863	-0,2%	589.682	-0,4%	587.323	-0,2%	586.148	-0,3%	584.390	-0,3%	582.637	-0,2%	581.471	-0,3%	579.727	-0,3%	577.988	-0,3%	576.254
Oelde	1.301.264	1.350.771	0,3%	1.354.823	0,2%	1.357.533	0,2%	1.360.248	0,1%	1.361.608	0,1%	1.362.970	0,1%	1.364.333	0,0%	1.364.333	0,1%	1.365.697	0,0%	1.365.697	0,0%	1.365.697	0,0%	1.365.697
Rheda-Wiedenbrück (nur Batenhorst, St. Vit)	88.890	95.913	-0,6%	95.338	0,0%	95.338	-0,1%	95.242	-0,1%	95.147	-0,2%	94.957	-0,2%	94.767	-0,2%	94.577	-0,2%	94.388	-0,2%	94.199	-0,2%	94.011	-0,2%	93.823
Wadersloh	529.018	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489	0,0%	564.489
Warendorf (nur Vohren)	14.828	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020	0,0%	17.020
Standrohre, Sonstige u. Abgrenzung	104.658	68.949		80.000		80.000		80.000		80.000		80.000		80.000		80.000		80.000		80.000		80.000		80.000
Summe Trinkwasserabgabe Tarifkunden (B.2.)	6.014.810	6.242.023	0,1%	6.247.966	0,0%	6.250.894	0,0%	6.252.076	-0,1%	6.248.030	-0,1%	6.244.308	-0,1%	6.235.381	-0,1%	6.227.596	-0,1%	6.219.087	-0,1%	6.209.873	-0,2%	6.198.523	-0,2%	6.187.889
Summe Trinkwasserabgabe (B.)	9.664.954	10.146.062		10.687.074		10.550.894		10.502.076		10.728.030		10.844.308		10.855.381		11.417.596		11.409.087		11.459.873		11.558.523		11.547.889
Netzverluste incl. Eigenbedarf (Summe A/. B.)	339.066	287.359		315.000		315.000		315.000		315.000		315.000		315.000		315.000		315.000		315.000		315.000		315.000
versorgte Einwohner im Versorgungsgebiet	139.652	144.927	0,1%	145.065	0,0%	145.133	0,0%	145.161	-0,1%	145.067	-0,1%	144.980	-0,1%	144.773	-0,1%	144.592	-0,1%	144.395	-0,1%	144.181	-0,2%	143.917	-0,2%	143.671
Spezifischer Wasserverbrauch in Liter/Einwohner x Tag	118	118		118		118		118		118		118		118		118		118		118		118	L	118
neue Baugebiete, ländlich Erschließung, HA-Verdichtung (220-260 HA/	a x 150 m³)			39.000	[39.000		37.500		36.000		36.000		34.500		34.500	[33.000		33.000		33.000		33.000
Zwischensumme (Summe Trinkwasserabgabe Tarifkunden + Netzver	luste + neue Ba	augebiete)		6.601.966	[6.604.894		6.604.576		6.599.030		6.595.308		6.584.881	[6.577.096		6.567.087		6.557.873		6.546.523	Γ	6.535.889
+ 5,0 % Sicherheitszuschlag (gem. Vorgaben der BezReg. Münster)				330.098	[330.245		330.229		329.952		329.765		329.244		328.855		328.354		327.894		327.326		326.794
+ Lieferung an andere WVU (Summe B.1.)				4.439.108	[4.300.000		4.250.000		4.480.000		4.600.000		4.620.000		5.190.000	[5.190.000		5.250.000		5.360.000		5.360.000
Gesamtbedarf				11.371.173		11.235.139		11.184.804		11.408.982		11.525.074		11.534.126		12.095.950		12.085.441		12.135.767		12.233.849		12.222.683

Anlage 10 Ergiebigkeit der Grundwasservorkommen im Versorgungsgebiet der Wasserversorgung Beckum GmbH



Quelle: Bundesanstalt für Geowissenschaften und Rohstoffe

Anlage 11 Weitere Wasserrechte und Altlasten

Anlage 12 Prognose zur Grundwasserneubildung

Quelle: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Untersuchungsplan für Rohwasser (Wasserwerk Vohren) Anlage 13

1. Untersuchungsplan für Rohwasser (Wasserwerk Vohren)

Probenahmestelle	Januar	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Bemerkungen
Rohwasseruntersuchung gem. §	50 LWG und Re	ohwasserüberw	achungsrichtlir	nie des MURL v	om 12. März 1	991							
Förderbrunnen													
HFB "Vohren I"				Α,	E						A		
HFB "Vohren II"				Α,	E						A		
HFB "Vohren III"				Α,	E						A		
HFB "Vohren IV"				Α,	E						A		
HFB "Vohren V"				Α,	E						A		
HFB "Dackmar I"				Α,	E						A		
HFB "Dackmar II"				Α,	E						A		
VB "Dackmar 1"				Α,	E						A		
VB "Dackmar 3"				Α,	E						A		
VB "Dackmar 4"				Α,	E						A		
VB "Dackmar 6"				Α,	E						A		
/B "Dackmar 9"				Α,	E						A		
Fließgewässer													
Ems (W 17a)				В,	0					В	, 0		
Nördlicher Talgraben (W 28)				C,	0					C,	, 0		
Südlicher Talgraben (W 16)				C,	0					C,	, 0		
/orfeldmessstellen													
81)					ı	D		
P 83)					ı	D		
232)					ı	D		
P 237)					ı	D		
238)					ı	D		
P 277)					ı	D		
P 278				Г)					-	D		
P 286)						D		
P 294)					-	D		
310)						D		
P 371)						D		
Sonderuntersuchungen													
Rohmischwasser				E, F, Parame	tergr. I, M, O					F, Paramet	ergr. I, M, O		
Wasserwerk Vohren (Trinkwasser)				E,	0						0		

A: Parametergruppen I, II, PSM

zusätzlich: Bor, Chrom (VI), Clostridium perfringens (einschließlich Sporen), Coliforme Bakterien, EDTA, Enterokokken, Escherichia coli, Färbung (spektraler Absorptionskoeffizient Hg 436 nm), Gesamthärte, Gesamtstickstoff (Nge sent), Karbonathärte, Koloniezahl bei 22 °C und 36 °C, Organisch gebundener Kohlenstoff (TOC), PSM (AMPA, Bromoxynil, Chlorthalonil, Florasulam, Fluroxypyr, Glyphosat, Iodosulfuron, Mesosulfuron, Mesosulfuron, Nicosulfuron, Tebuconazol, Topramezone, Tribenuron), Redoxpotential

B: Parametergruppe I_{min}, PSM; zusätzlich: AOX, Bor, CKW, EDTA
C: Parametergruppe I_{min}, PSM; zusätzlich: Bor, EDTA
D: Parametergruppe I_{min}, PSM

E: nicht relevante PSM-Metabolite der Wirkstoffe: Azoxystrobin, Dimethenamid-P, Fluopicolide, Flurtamone, Metalaxyl-M, Metazachlor, Pethoxamid, Picoxystrobin, S-Metolachlor, Thiacloprid, Flufenacet

F: Clostridium perfringens (einschließlich Sporen), Coliforme Bakterien, Enterokokken, Escherichia coli, Koloniezahl bei 22 °C und 36 °C

M: Redoxpotential, TOC

O: Trifluoracetate (TFA)

Anlage 14 Untersuchungsplan für Trinkwasser (Wasserwerk und Übergabestellen)

2.a) Untersuchungsplan für Trinkwasser

Probenahmestelle	Januar	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Bemerkungen
Trinkwasseruntersuchung gen	n. TrinkwV 200	1 (Änderungss	tand: 18. Nove	mber 2015)									
Wasserwerk und Übergabeste	llen												
Wasserwerk Vohren	G, I	G, I	G, I, N	G, H, I	G, I	G, I, N	G, I	G, I	G, I, N	G, H, I	G, I	G, I, N	
Übergabeschacht Rippelbaum (Zapfhahn 5)	G, I		G, I		G, H, I		G, I		G, I		G, I		
Übergabe Gelsenwasser, Beckum		G, I		G, I		G, H, I		G, I		G, I		G, I	
Mischwasser (Ringleitung), Beckum	G, I		G,	I		G, H, I		G, I			G, I		
Übergabe Aabach-Talsperre, Wadersloh-Bornefeld	G, I		G, I		G, H, I		G, I		G, I		G, I		
Übergabeschacht Hecker, Batenhorster Str., Langenberg (Zapfhahn Übergabe VGW)	G	G, I	G	G, I	G	G, H, I	G	G, I	G	G, I	G	G, I	

G: Routinemäßige Untersuchungen [gem. TrinkwV, Anlage 4, Teil I, Pkt. a)]

Ammonium, Clostridium perfringens (einschließlich Sporen), Coliforme Bakterien, elektrische Leitfähigkeit, Escherichia coli, Färbung, Geruch, Geschmack, Koloniezahl bei 22 °C und 36 °C, Trübung, Wasserstoffionen-Konzentration (pH-Wert) H: Umfassende Untersuchungen [gem. TrinkwV, Anlage 4, Teil I, pkt. b)] – Mikrobiologische Parameter (TrinkwV, Anlage 1, Teil I) und chemische Parameter (TrinkwV, Anlage 2, Teil I)

E: Unitassende Untersuchungen [gem. Trinkwv, Anlage 4, Teil 1, PKt. b]] — Mikrobiologische Parameter (Trinkwv, Anlage 1, Teil 1) und Chemische Parameter (Trinkwv, Anlage 2, Teil 1)
1,2-Dichlorethan, Benzol, Bor, Bromat, Chrom, Cyanid, Enterokokken, Escherichia coli, Fluorid, Nitrat, Pflanzenschutzmittel- und Biozid-Wirkstoffe (Einzelwirkstoff und insgesamt), Quecksilber, Selen, Summe Nitrat/50 und Nitrit/3, Tetrachlorethen und Trichlorethen, Uran

I: Umfassende Untersuchungen [gem. TrinkwV, Anlage 4, Teil I, Pkt. b)] – Indikatorparameter (TrinkwV, Anlage 3, Teil I)
Aluminium, Ammonium, Calcitiósekapazität, Chlorid, Clostridium perfringens (einschließlich Sporen), Coliforme Bakterien, Eisen, elektrische Leitfähigkeit, Färbung (spektraler Absorptionskoeffizient Hg 436 nm), Geruch, Geschmack, Koloniezahl bei 22 °C und 36 °C, Mangan, Natrium, Organisch gebundener Kohlenstoff (TOC), Sulfat, Trübung, Wasserstoffionen-Konzentration (pH-Wert)
zusätzlich: Basekapazität bis pH 8,2, Calcium, gelöster organisch gebundener Kohlenstoff (DOC), gelöstes Kohlendioxid (freie Kohlensäure), Gesamthärte, Kalium, Karbonathärte, Magnesium, Nitrat, Nitrit, Phosphat, Sauerstoff, Sättigungsindex,

Säurekapazität bis pH 4,3, Summe Erdalkalien, Summe Nitrat/50 und Nitrit/3, Temperatur
N: Anforderungen an Trinkwasser in Bezug auf radioaktive Stoffe [gem. TrinkwV, Anlage 3a, Teil 1]
Radon-222, Richtdosi,

Untersuchungsplan für Trinkwasser (Versorgungsgebiet) Anlage 15

2.b) Untersuchungsplan für Trinkwasser

Burkanakan atalla	3	Falaman	N# V	A11		To and	n.dr		Contombon	Obtobas	Name	Dh.	D
Probenahmestelle	Januar Triales (1 2001)	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Bemerkungen
Trinkwasseruntersuchung gem.					4.7-1	-10-1	- \						
Versorgungsgebiet, Zone I (Misc		hend aus Anteil		k Vohren, Aaba		nd Gelsenwass							1
Beckum	G, J		G		G		G		G		G		
Beckum-Roland		G				G				G			
Beckum-Vellern				G				G				G, J	
Lippetal-Lippborg	G		G		G		G, J		G		G		
Versorgungsgebiet, Zone II (Trir	nkwasser aus d		k Vohren)				1		1				
Ahlen-Vorhelm		G			G			G			G		
Beckum-Neubeckum		G		G		G		G		G, J		G	
Beelen			G, J			G			G			G	
Ennigerloh		G		G		G, J		G		G		G	
Ennigerloh-Enniger	G				G				G				
Ennigerloh-Ostenfelde		G				G				G			
Ennigerloh-Westkirchen			G				G				G		
Oelde		G		G		G		G		G		G, J	
Oelde-Lette	G				G				G				
Oelde-Stromberg		G		G		G		G		G		G	
Oelde-Sünninghausen			G				G				G		
Rheda-Wiedenbrück-Batenhorst		G				G				G			
Rheda-Wiedenbrück-St. Vit			G				G				G		
Versorgungsgebiet, Zone III (Tr	inkwasser aus	der Aabach-Tal	Isperre)										
Bad Sassendorf-Bettinghausen	G				G				G				
Bad Sassendorf-Ostinghausen		G				G				G			
Bad Sassendorf-Weslarn			G				G				G		
Langenberg				G				G, J				G	
Langenberg-Benteler	G				G				G				
Lippetal-Brockhausen		G				G				G			
Lippetal-Herzfeld			G				G				G		
Lippetal-Hovestadt				G				G				G, J	
Lippetal-Oestinghausen	G				G				G				
Wadersloh			G, J				G				G		
Wadersloh-Diestedde			-	G				G				G	
Wadersloh-Liesborn	G				G				G				

G: Routinemäßige Untersuchungen [gem. TrinkwV, Anlage 4, Teil I, Pkt. a)]
Ammonium, Clostridium perfringens (einschließlich Sporen), Coliforme Bakterien, elektrische Leitfähigkeit, Escherichia coli, Färbung, Geruch, Geschmack, Koloniezahl bei 22 °C und 36 °C, Trübung, Wasserstoffionen-Konzentration (pH-Wert)

J: Umfassende Untersuchungen [gem. TrinkwV, Anlage 4, Teil I, Pkt. b)] – Chemische Parameter (TrinkwV, Anlage 2, Teil II)
Antimon, Arsen, Benzo-(a)-pyren, Blei, Cadmium, Epichlorhydrin, Kupfer, Nickel, Nitrit, Polyzyklische aromatische Kohlenwasserstoffe, Summe Nitrat/50 und Nitrit/3, Trihalogenmethane, Vinylchlorid

Anlage 16 Mittelwerte aus den Rohwasseruntersuchungen der Brunnenanlagen aus dem Jahr 2016

Horizontalfilterbrunnen "Vohren I"

Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

			eruntersuchun			Mittalwart	Std A but Pro-
Parameter Trübung, qualitativ	ohne	MIN_G	Min von MW	max_G	max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ	ohne						
Geruch, qualitativ Wassertemperatur	°C		10,2		12,4	11,72499991	1,02428784
Wassertemperatur (=>KB8,2)	°C		16,4		20,2	18,30000019	2,687008849
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		15,8 10,2		19,4 12,1		2,545582734 1,343500166
Leitfähigkeit, elektr. bei 25°C	µS/cm		662		694	678	22,627417
SAK 436 nm, Färbung SAK 254 nm, UV-Absorption	1/m 1/m		0,24 8,9		0,32 9,4	0,279999994 9,149999619	0,056568573 0,353551125
Redoxspannung Eh (E)	mV		192		221	206,5	20,50609665
Säurekapazität bis pH 4,3	mmol/		3,82		4,02 0.52	3,919999957 0,454999983	
Basekapazität bis pH 8,2 Gesamthärte in °dH	°dH		14,7		14,8		
Karbonathärte in °dH	°dH		10,7		11,3	11	0,424264428
Nitrat-Stickstoff (NO3-N) Nitrit-Stickstoff (NO2-N)	mg/l		0,5828		1,4435 0,0177	1,013150007	
Ammonium-Stickstoff (NH4-N)	mg/l		0,132		0,1398	0,135899998	0,00551546
Summe Kationen (ext. ber.) Summe Anionen (ext. ber.)	meg/I		6,77 6,52		6,96 7,08		0,134356015
lonenbilanzfehler (ext. ber.)	%		-1,65		3,82	1,084999979	3,867874033
Summe Erdalkalien (mmol/l)	mmol/l		2,62		2,65 2,4	2,63499999	
Sauerstoff, gelöst Kohlendioxid, gel.	mg/l mg/l		17,2		22,9	1,350000054 20,05000019	1,484924221 4,030506755
DOC	mg/l		3,7		3,9		
TOC Aluminium (AI), gesamt	mg/l	<	3,8 0,01	<	0,01	3,899999976	0,141421188
Ammonium (NH4)	mg/l		0,17		0,18	0,175000004	0,007070991
Arsen (As) Blei (Pb)	mg/l mg/l	<	0,001	<	0,001	0,001	0,00000018
Bor (B)	mg/l	_	0,055	,	0,059	0,057	0,002828417
Cadmium (Cd)	mg/l	<	0,0002	<	0,0002	0,0002	
Calcium (Ca) Chlorid (Cl)	mg/l mg/l		96 47,4		97,3 60,7	96,65000153 54,05000114	9,404520015
Chrom (Cr), gesamt	mg/l	<	0,001	<	0,001	0,001	0,00000018
Cyanid (Cn), gesamt Eisen (Fe), gesamt	mg/l	<	0,005 1,995	<	0,005 2,306	0,005 2,1505	
Fluorid (F)	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Hydrogencarbonat (HCO3) Kalium (K)	mg/l mg/l		233,085 7,44		245,288 8,35	239,1865005 7,895000219	8,628801912 0,643464283
Magnesium (Mg)	mg/l		5,31		5,34	5,325000048	0,021244556
Mangan (Mn), gesamt	mg/l		0,702		0,779		
Natrium (Na) Nickel (Ni)	mg/l	<	27,2 0,002	<	32,4 0,002	29,80000114	3,676958292 0,00000036
Nitrat (NO3)	mg/l		2,58		6,39	4,484999895	2,694077119
Nitrit (NO2) Phosphat (PO4), ortho-	mg/l mg/l	<	0,056	<	0,058	0,057 0,100000001	0,001414176
Quecksilber (Hg), gesamt	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Sulfat (SO4) 1,1,1-Trichlorethan	mg/l mg/l	_	60,4 0,0001	_	62,6 0,0001	61,5 0,0001	1,555609808 0,00000003
Dichlormethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Tetrachlorethen (PER)	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Trichlorethen (TRI) Tetrachlormethan	mg/l mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
AOX	mg/l	<	0,01	<	0,01	0,01	0,000001972
2,4-Dichlorphenoxyessigsäure (2,4-D) Atrazin	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Bentazon	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Chloridazon Chloridazon	mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Chlortoluron Clopyralid	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Desethylatrazin	mg/l	<	0,00002	<	0,00002		
Dicamba Dichlorprop (2,4-DP)	mg/l mg/l	<	0,00001	<	0,00001	0,00001 0,00003	0,000000001
Diflufenican	mg/l	<	0,00005	<	0,00005	0,00005	0,00000015
Diuron Isoproturon	mg/l mg/l	<	0,00003	<	0,00003	0,00003	
MCPA	mg/l	<	0,00002	<	0,00002	0,00002	
Mecoprop (MCPP)	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Metalaxyl Metazachlor	mg/l mg/l	<	0,00007	<	0,00007	0,00007	0.000000000
Methabenzthiazuron	mg/l	<	0,00004	<	0,00004		
Metobromuron Metolachlor	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metribuzin	mg/l	<	0,00002	<	0,00002		
Simazin Terbuthylazin	mg/l mg/l	<	0,00001	<	0,00001	0,00001 0,00001	0,000000001
Geruchsart	ohne		0,00001		0,0001	0,00001	0,00000000
Koloniezahl bei 20°, KBE/ml	ohne		0		49	25	
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml 2,6-Dichlorbenzamid	ohne mg/l	<	0,00005	<	0,00005		
Trübung, quantitativ (in FNU/NTU)	ohne		15		18	16,5	2,121320344
Escherichia coli, KBE/100 ml Enterokokken, KBE/100 ml	ohne		0		5		
Coliforme Bakterien, KBE/100 ml	ohne		0		0	0	0
Summe PSM u. Biozidprodukte Clostridium perfringens, KBE/100 ml	mg/l ohne	-	0		0		
pH-Wert (vor Ort gemessen)	ohne		7,24		7,29	7,264999866	0,035340894
Flufenacet	mg/l	٧ ٧	0,00005	v v	0,00005	0,00005	0,000000015
Flurtamone Färbungsart	mg/l ohne	<	0,00005		0,00005	0,00005	0,00000015
Redoxspannung gg. Ag/AgCI-Elek	mV		-25		4		
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/l ohne	<	0,0001	<	0,0001	0,0001	0,00000003
Calcium-Härte in °dH	°dH		13,44		13,622	13,53099966	
Magnesium-Härte in °dH	°dH		1,221		1,228	1,2245	0,004956905
Färbung, qualitativ-Intensität Geruch, qualitativ-Intensität	ohne						
pH-Wert bei Messtemperatur	ohne		7,23		7,3	7,265000105	
Metazachlor-Säure (Metabolit BH 479-4) Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l mg/l		0,00017		0,00017		
S-Metolachlor-Sulfonsäure (Met: CGA 380168)	mg/l		0,00059		0,00059	0,00059	
Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Säure (Metabolit M23)	mg/l mg/l	-	0,00019		0,00019		
Flufenacet-Säure	mg/l	<	0,00005	<	0,00005	0,00005	
Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l	<	0,00005	<	0,00005		
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906) S-Metolachlor (Met: CGA 351916)	mg/l mg/l	<	0,00005	<	0,00005		
Dimethenamid-P	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
S-Metolachlor Metabolit: CGA 357704 S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	mg/l mg/l		0,00017		0,00017		
	mg/l		0,0001		0,0001		
S-Metolachior-Sulfonsaure (Metabolit NOA 413173)				I	694		
Leitfähigkeit, elektr. bei 25°C, vor Ort	µS/cm		662			0.00000	
S-Metolachior-Sulfonsäure (Metabolit NOA 413173) Leitfähigkeit, elektr. bei 25°C, vor Ort Flufenacet (Met: ESA) S-Metolachior Metabolit: CGA 50267	mg/l mg/l	<	0,00006	<	0,00006		

Horizontalfilterbrunnen "Vohren II" werte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

Tribune Section Proceedings Procedings Proceedings Procedings Proceedings Proceeding	(Mittelwerte a	ius den F	Rohwass	eruntersuchung	gen aus d	lem Jahr 2016)		
Fabrica Contribution Februs Auditable Februs A			Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Genobs G								
Wasselmeneal CAPRES D	Geruch, qualitativ			0.0		110	12.25	2 747005000
Wassengerigent (==eth C								0,212080688
Interlangual cests, ber 2PC								2,616294598
Section Machine Mach	Leitfähigkeit, elektr. bei 25°C	µS/cm		644		809	726,5	116,6726189
Redougnary mg Pa 60								0,056568546
Baseleanest 15 apr 41 22	Redoxspannung Eh (E)			174		275	224,5	71,4177849
Responsibility 1.00								0,056572256
New April								0,494970951
Ammorani-Scielard (1944-4) mgil 0,445 0,0000 0,000440001 0,01 15056 0,0000 0,000440001 0,01 15056 0,0000 0,000440001 0,01 15056 0,0000 0,000440001 0,01 15056 0,0000 0,000440001 0,01 15056 0,0000 0,0000040001 0,0000001 0,0000001 0,0000001 0,0000001 0,0000001 0,0000001 0,0000001 0,00	Nitrat-Stickstoff (NO3-N)			1,2176		2,4397	1,828649938	0,86415517
Summa Richore Inter Dec								0,006646802
Superbiancy Friend St.	Summe Kationen (ext. ber.)	meg/I		6,46		7,87	7,164999962	0,997020605
Sament (Sament								1,074802753 0,981464118
Richard Cond. mgr	Summe Erdalkalien (mmol/l)	mmol/l		2,42		2,54	2,480000019	0,084852216
TOCK	Kohlendioxid, gel.							2,828427125
Alambrane (A) pessent								0,000704209
Angen (AB) Bill (Fib)	Aluminium (AI), gesamt		<	0,01	<	0,01	0,01	0,000001972
Bill (FID)	Ammonium (NH4) Arsen (As)		<		<			0,014849245
Cadmum (Ca)	Blei (Pb)	mg/l	<	0,001	<	0,001	0,001	0,00000018
Calson (Ca)			<	0,056	<			0,019091881
Chroni (Cr), geaem1	Calcium (Ca)	mg/l		88,8		93,7	91,25	3,464806317
Cyanel Circl, gesemit mg1			<	0,001		0,001	0,001	0,00000018
Figure (P)	Cyanid (Cn), gesamt	mg/l	<	0,005		0,005	0,005	0,000000986
Kalluri (R)	Fluorid (F)	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Magnesim Majo Major Majo								3,451508503 2,361734515
Next and Nate Next and Nat	Magnesium (Mg)	mg/l		4,94		5,01	4,975000143	0,049490575
Miscal (MD)								0,001410533 17,32411988
Netre (NO2)	Nickel (Ni)	mg/l	<	0,002	<	0,002	0,002	0,00000036
Prosphile (POH), ortho-								3,825448382 0,02192031
Suffer (SCA)		mg/l	۷ .		_			0,0070711
Dishipmenthen	Sulfat (SO4)		_	60,1		66,9	63,5	4,808338298
Test achievement (PER)			<		<			
Test achiomethen	Tetrachlorethen (PER)	mg/l	_	0,0001		0,0001	0,0001	0,00000003
ACX			_		<			0,00000003
Altrazin	AOX	mg/l			<			0,000001972
Chioridatizon					<			0,000000001
Chiotroliuron			<		<			0,000000000
Desethylatrazin	Chlortoluron	mg/l	_	0,00004	<	0,00004	0,00004	0,000000004
Dicamba					<			0,000000004
Diffurence	Dicamba	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
			_		<			0,000000015
MCPA			_		<			0,000000004
Metalaxy	MCPA	mg/l	<	0,00002		0,00002	0,00002	0,000000002
Mebzachior			<					
Mebbromuron	Metazachlor	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Met ibuzin			<		<			0,000000004
Simazin			_		<			0,000000004
Geruchsart Ohne	Simazin	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Koloniezah be 20', KBE/ml			<	0,00001	<	0,00001	0,00001	0,000000001
2.6-Dichlorbenzamid mg/l	Koloniezahl bei 20°, KBE/ml	ohne						1,414213562
Trübung, quantitativ (in FNU/NTU)	Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml 2.6-Dichlorbenzamid		<					0
Enteroxokkien, KBE/100 ml	Trübung, quantitativ (in FNU/NTU)	ohne		15		15	15	0
Coliforme Balkerien, KBE/100 ml Ohne 0 0 0 Summe PSM is Biocitylinouslyte mg/l 0 0 0 0 Clostridium perfringens, KBE/100 ml ohne 0 0 0 0 Fluffenacot mg/l 0 0 0 0 0 Fluffenacot mg/l 0 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.000005 0.000005	Enterokokken, KBE/100 ml			0		0	0	0
Clostridium perfringens, KBE/100 ml Ohne	Coliforme Bakterien, KBE/100 ml	ohne		0		0	0	0
Flufanaote				0		0	0	0
Flutamone			<	7,3	<			0,028259714
Redoxspannung qq, A/A/QCI-Elek mV -43 58 7,5 71,417784 Summe LHMV gemäß LIW mg/l 0,0001 0,0001 0,0001 0,00010 0,00001 0,00001 0,00001 0,00001 0,00001 0,00001 0,00001 0,000001 0,000001 0,000001 0,000001 0,000001 0,000001 0,0000000 0,0000000	Flurtamone	mg/l	<					0,000000015
Summe LHRW/ gem86 LfW			_	-43		58	7.5	71,4177849
Calcium-Hafte in "dH	Summe LHKW gemäß LfW	mg/l	<		<			0,00000003
Magne sium-Haire in "GH" "GH" 1,136 1,152 1,143999994 0,01131337 Farbung, qualitativ-Intensitat ohne -				12,432		13,118	12,7750001	0,485073221
Geruch, qualitativ-Intensitit	Magnesium-Härte in °dH					1,152		0,011313377
Metazachior-Saure (Metabolit BH 479-4) mg/l 0.00009 0.00009 0.00009 Metazachior-Saure (Metabolit BH 479-4) mg/l 0.00011 0.00011 0.00011 S-Metolachior-Sulfonsaure (Metabolit M27) mg/l 0.00053 0.00053 0.00053 Dmethenamid-Sulfonsaure (Metabolit M27) mg/l 0.000022 0.00022 0.00022 Dmethenamid-Saure (Metabolit M27) mg/l 0.00006 0.00006 0.00006 Flufenaert-Saure mg/l 0.00005 0.00005 0.00005 Metalaxyl-Bicarte (Metabolit CGA 62826/NOA 409045) mg/l 0.00005 0.00005 0.00005 Metalaxyl-Dicartonsaure (Metabolit CGA 108906) mg/l 0.00005 0.00005 0.00005 Metalaxyl-Bicartonsaure (Metabolit CGA 351916) mg/l 0.00002 0.00005 0.00005 S-Metolachior (Met. CGA 351916) mg/l 0.00002 0.00002 0.00002 S-Metolachior Metabolit. CGA 357704 mg/l 0.00002 0.00002 0.00002 S-Metolachior Sulfonsaure (Metabolit NOA 413173) mg/l 0.00005 0.00005 <	Geruch, qualitativ-Intensität	ohne						
Metazachior-Sulfonsalure (Metabolit BH 479-8) mg/l 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00013 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.00005 0.00005 0.00005 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.00005 0.0								0,001863367
Dmethenamid-Suffonsalure (Metabolit M27) mg/l 0,00022 0,00022 0,00022 0,00006 0,00	Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00011		0,00011	0,00011	
Dmethenamid-Salure (Metabolit M23) mg/l 0,00006 0,00006 0,00006 0,00006								
Metalasyl-Saure (Metabolit CGA 62826/NOA 409045) mg/l 0,00005 0,00005 0,00005 S-Metolachlor (Met. CGA 351916) mg/l 0,00005 0,00005 0,00005 S-Metolachlor (Met. CGA 351916) mg/l 0,00029 0,00029 0,00022 0,00002 S-Metolachlor Metabolit: CGA 357704 mg/l 0,00015 0,00015 0,00015 S-Metolachlor-Sulfonsäure (Metabolit CGA 368208) mg/l 0,00009 0,00009 0,00009 S-Metolachlor-Sulfonsäure (Metabolit CGA 4613173) mg/l 0,00035 0,00035 0,00035 Leitfanjöret, elektr. bei 25°C, vor Ort mg/l 0,00005 0,00005 0,00005 S-Metolachlor-Metabolit: CGA 50267 mg/l 0,00005 0,00005 0,00005 S-Metolachlor Metabolit: CGA 50720 mg/l 0,00005 0,00005 0,00005	Dimethenamid-Säure (Metabolit M23)	mg/l	_	0,00006		0,00006	0,00006	
Metalasyl-Dicarbonsaure (Metabolit CGA 108908) mg/l 0,00005 0,00005 0,00005 0,00009 0,00009 0,00009 0,00009 0,00009 0,00009 0,000029 0,000029 0,000029 0,000020 0,000020 0,000020 0,000002 0,000002 0,000002 0,000000 0,000015 0,00015 0,00015 0,00015 0,00015 0,00015 0,00015 0,00015 0,00015 0,00015 0,00009 0,00009 0,00009 0,00009 0,00009 0,00009 0,00005 0,00035 0,00035 0,00035 0,00035 0,00035 0,00035 0,00035 0,00035 0,00005 </td <td>Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)</td> <td>mg/l</td> <td><</td> <td>0,00005</td> <td><</td> <td>0,00005</td> <td>0,00005</td> <td></td>	Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l	<	0,00005	<	0,00005	0,00005	
Dimethenamid-P mg/l	Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l	<	0,00005		0,00005	0,00005	
S-Metolachior-Sulfonsiture (Metabolit CGA 388208) mg/l 0,00009	Dimethenamid-P	mg/l	<	0,00002		0,00002	0,00002	0,000000002
S-Metolachior-Sulfonsiture (Metabolit NOA 413173) mg/l 0,00035	S-Metolachior Metabolit: CGA 357704 S-Metolachior-Sulfonsäure (Metabolit CGA 368208)							
Flufenacet (Met: ESA) mg/l < 0,00005 < 0,00005 0,00005 0,00005	S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l		0,00035		0,00035	0,00035	47.4.400.000
S-Metolachior Metabolit: CGA 50267 mg/l < 0,00005 < 0,00005 0,00005 S-Metolachior Metabolit: CGA 50720 mg/l < 0,00005 < 0,00005 0,00005			<	0,00005			0,00005	116,6726189
	S-Metolachlor Metabolit: CGA 50267	mg/l		0,00005	<	0,00005	0,00005	
Fluopicolide mg/l < 0,00002 < 0,00002 0,00002 0,0000000								0,000000002

Horizontalfilterbrunnen "Vohren III" erte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

			eruntersuchun				
Parameter Trübung, qualitativ	ohne	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ	ohne						
Geruch, qualitativ Wassertemperatur	°C		10	\vdash	13,8	12,4333334	2,112659978
Wassertemperatur (=>KB8,2)	°C		19,5		20	19,75	0,353553391
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		7,3 10		19,4 13,4	13,34999991 11,69999981	8,555991547 2,404161231
Leitfähigkeit, elektr. bei 25°C SAK 436 nm, Färbung	μS/cm 1/m		653 0,32		742 0,4	697,5 0,359999999	62,93250353 0,056568627
SAK 254 nm, UV-Absorption	1/m		12		12	12	0
Redoxspannung Eh (E) Säurekapazität bis pH 4,3	mV mmol/l		141		206 4,29	173,5 4,194999933	45,96194078 0,134354026
Basekapazität bis pH 8,2	mmol/l		0,47		0,51	0,489999995	0,02828404
Gesamthärte in *dH Karbonathärte in *dH	°dH		14 11,5		14,9 12	14,44999981 11,75	0,636400449 0,353553391
Nitrat-Stickstoff (NO3-N)	mg/l		0,3004		0,8652	0,582799986	0,399373937
Nitrit-Stickstoff (NO2-N) Ammonium-Stickstoff (NH4-N)	mg/l mg/l		0,0137 0,2795		0,0155 0,3028	0,0146 0,291150004	0,001272796 0,016475676
Summe Kationen (ext. ber.)	meq/I		6,62		7,37	6,994999886 7,089999914	0,530329698
Summe Anionen (ext. ber.) Ionenbilanzfehler (ext. ber.)	meq/I %		6,66 -1,92		7,52 -0,716	-1,317999989	0,608112378 0,851356581
Summe Erdalkalien (mmol/l) Sauerstoff, gelöst	mmol/l mg/l	_	2,5 0,2		2,65 2,9	2,575000048 1,550000049	0,10606613 1,90918844
Kohlendioxid, gel.	mg/l		20,7		22,4	21,55000019	1,202074689
DOC TOC	mg/l mg/l		4,6 5		5,1 5,1	4,849999905 5,049999952	0,353553418 0,07070562
Aluminium (AI), gesamt	mg/l	<	0,01		0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,36 0,0019		0,39	0,375 0,00195	0,021212856
Blei (Pb)	mg/l	<	0,001	<	0,001	0,001	0,0000018
Bor (B) Cadmium (Cd)	mg/l mg/l	<	0,056	<	0,07	0,063000001	0,009899492
Calcium (Ca)	mg/l		91,3 48.8		97	94,15000153	4,03049067 16,89985076
Chlorid (CI) Chrom (Cr), gesamt	mg/l mg/l	<	0,001	<	72,7 0,001	60,74999809 0,001	0,0000018
Cyanid (Cn), gesamt	mg/l	<	0,005 2,879		0,005 3.164	0,005 3,021499991	0,000000986 0,201527324
Eisen (Fe), gesamt Fluorid (F)	mg/l mg/l	<	2,879	<	3,164	0,100000001	0,201527324
Hydrogencarbonat (HCO3)	mg/l		250,17		261,763	255,9664993 10,5250001	8,197376053
Kalium (K) Magnesium (Mg)	mg/l mg/l		9,45 5,41		11,6 5,59	5,5	1,520281772 0,127283225
Mangan (Mn), gesamt Natrium (Na)	mg/l mg/l		0,943 28,4		1,05 36,9	0,996499985 32,65000057	0,075659946 6.010410157
Nickel (Ni)	mg/l	<	0,002	<	0,002	0,002	0,00000036
Nitrat (NO3) Nitrit (NO2)	mg/l mg/l		1,33 0,045		3,83 0,051	2,579999983	1,767766915 0.004242639
Phosphat (PO4), ortho-	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l mg/l	<	0,0001 54	<	0,0001 55,4	0,0001 54,70000076	0,00000003
1,1,1-Trichlorethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Dichlormethan Tetrachlorethen (PER)	mg/l mg/l	<	0,0001	<	0,0001	0,0001 0,0001	0,00000003
Trichlorethen (TRI)	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Tetrachlormethan AOX	mg/l mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Atrazin Bentazon	mg/l mg/l	<	0,00001	<	0,00001	0,00001 0,00002	0,000000001
Chloridazon	mg/l	< <	0,00004	<	0,00004	0,00004 0,00004	0,000000004
Chlortoluron Clopyralid	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Desethylatrazin Dicamba	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00001	0,000000000
Dichlorprop (2,4-DP)	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Diflufenican Diuron	mg/l mg/l	<	0,00005	< <	0,00005	0,00005	0,000000015
Isoproturon	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l mg/l	<	0,00002		0,00002	0,00002	0,000000002
Metalaxyl	mg/l	<	0,00007	<	0,00007	0,00007	0,00000017
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00004	0,000000002
Metobromuron	mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metolachior Metribuzin	mg/l mg/l	<	0,00003	<	0,00003	0,00003 0,00002	0,0000000004
Simazin Terbuthylazin	mg/l mg/l	< <	0,00001		0,00001	0,00001	0,000000001
Geruchsart	ohne				0,00001		0,000000001
Koloniezahl bei 20°, KBE/ml Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne		0		1	0,333333333	0,577350269 0,577350269
2,6-Dichlorbenzamid	mg/l	<	0,00005	<	0,00005	0,00005	
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne ohne		20		21 0	20,5	0,707106781
Enterokokken, KBE/100 ml	ohne		0		0	0	0
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l		0		1 0	0,333333333	0,577350269
Clostridium perfringens, KBE/100 ml	ohne		0		0	0	0
pH-Wert (vor Ort gemessen) Flufenacet	ohne mg/l	<	7,31 0,00005	<	7,32 0,00005	7,315000057 0,00005	0,007043257
Flurtamone	mg/l	<	0,00005		0,00005	0,00005	0,00000015
Färbungsart Redoxspannung gg. Ag/AgCI-Elek	ohne mV		-76		-11	-43,5	45,96194078
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/l ohne	<	0,0001	<	0,0001	0,0001	0,00000003
Calcium-Härte in °dH	°dH		12,782		13,58	13,18099976	0,564273487
Magnesium-Härte in °dH Färbung, qualitativ-Intensität	°dH ohne		1,244		1,286	1,264999986	0,02969925
Geruch, qualitativ-Intensität	ohne						
pH-Wert bei Messtemperatur Metazachlor-Säure (Metabolit BH 479-4)	ohne mg/l		7,25 0,00008	\vdash	7,27 0,00008	7,25999999 0,00008	0,014203369
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00009		0,00009	0,00009	
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l mg/l		0,00066		0,00066		
Dimethenamid-Säure (Metabolit M23)	mg/l		0,00008		0,00008	0,00008	
Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l	<	0,00005		0,00005	0,00005 0,00005	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l	<	0,00005		0,00005	0,00005	
S-Metolachlor (Met: CGA 351916) Dimethenamid-P	mg/l mg/l	<	0,00026	<	0,00026	0,00026 0,00002	0,0000000002
S-Metolachlor Metabolit: CGA 357704	mg/l		0,00015		0,00015	0,00015	
S-Metolachlor-Sulfonsäure (Metabolit CGA 368208) S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l mg/l	<u> </u>	0,00007		0,00007		
Leitfähigkeit, elektr. bei 25°C, vor Ort	µS/cm		653 0,00005		742 0,00005	697,5 0,00005	62,93250353
Flufenacet (Met: ESA) S-Metolachlor Metabolit: CGA 50267	mg/l mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachlor Metabolit: CGA 50720	mg/l	<	0,00005	<	0,00005	0,00005	0.000000000
Fluopicolide	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002

Horizont alfilterbrunnen "Vohren IV" (Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

					dem Jahr 2016)		
Parameter Trübung, qualitativ	ohne	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ	ohne						
Geruch, qualitativ Wassertemperatur	°C		11,1		11,6	11,35000038	0,35355652
Wassertemperatur (=>KB8,2)	°C		9,4		20,5		7,848885551
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		9,8 11,1		19,5 11,6		6,858935437 0,35355652
Leitfähigkeit, elektr. bei 25°C	µS/cm		693 0.27		712 0.28	702,5	13,43502884 0,007071001
SAK 436 nm, Färbung SAK 254 nm, UV-Absorption	1/m 1/m		9,1		9,3	0,275000006 9,200000286	0,007071001
Redoxspannung Eh (E)	mV		132		190	161	41,01219331
Säurekapazität bis pH 4,3 Basekapazität bis pH 8,2	mmol/l		4,48 0,68		4,48 0,7	4,480000019 0,689999998	0,000366439
Gesamthärte in *dH	°dH		14,9		15,4	15,14999962	0,353561914
Karbonathärte in *dH Nitrat-Stickstoff (NO3-N)	°dH mg/l	<	12,5 0,2259		12,5 0,2733	12,5 0,249599993	0,03351681
Nitrit-Stickstoff (NO2-N)	mg/l		0,0076		0,0192	0,013400001	0,008202439
Ammonium-Stickstoff (NH4-N) Summe Kationen (ext. ber.)	mg/l		0,1941 7,03		0,2252 7,25	0,209650002 7,140000105	0,021991086 0,155561101
Summe Anionen (ext. ber.)	meq/I		7,03		7,23	7,140000103	0,113129613
Ionenbilanzfehler (ext. ber.) Summe Erdalkalien (mmol/l)	% mmol/l		-2,05 2,66		-1,15 2,74	-1,599999964	0,636396171 0,05656801
Sauerstoff, gelöst	mg/l	<	0,2		2,74		1,697056138
Kohlendioxid, gel.	mg/l		29,9		30,8		0,636373954
TOC	mg/l mg/l		3,7 4,1		4,4		0,212132428 0,212132214
Aluminium (AI), gesamt	mg/l	<	0,01		0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l		0,25 0,0027		0,0029		0,028284229 0,000141422
Blei (Pb)	mg/l	<	0,0027		0,0029	0,0028	0,0000141422
Bor (B)	mg/l		0,062		0,066	0,063999999	0,002828465
Cadmium (Cd) Calcium (Ca)	mg/l mg/l		0,0002 97,1		0,0003	0,00025 98,54999924	0,000070711 2,050721093
Chlorid (CI)	mg/l		49,6		52,7	51,14999962	2,192037687
Chrom (Cr), gesamt Cyanid (Cn), gesamt	mg/l mg/l	<	0,001		0,001	0,001	0,00000018
Eisen (Fe), gesamt	mg/l		5,113		5,515	5,313999891	0,284259118
Fluorid (F) Hydrogencarbonat (HCO3)	mg/l mg/l	<	0,1 273,356	<	0,1 273,356	0,100000001 273,3559875	0,000028628 0,086501966
Kalium (K)	mg/l		8,13		8,2		0,085301966
Magnesium (Mg)	mg/l		5,68		5,95	5,814999819	0,190914428
Mangan (Mn), gesamt Natrium (Na)	mg/l mg/l		1,566 28,8		1,62 29,9	1,592999995 29,34999943	0,038181089
Nickel (Ni)	mg/l	<	0,002		0,002	0,002	0,00000036
Nitrat (NO3) Nitrit (NO2)	mg/l mg/l	<	0,025		1,21 0,063	1,105000019 0.044000001	0,148492552 0,02687006
Phosphat (PO4), ortho-	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l	<	0,0001	<	0,0001	0,0001 63,35000038	0,00000003 1,626342899
1,1,1-Trichlorethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Dichlormethan	mg/l	<	0,0001		0,0001	0,0001	0,00000003
Tetrachlorethen (PER) Trichlorethen (TRI)	mg/l mg/l	<	0,0001		0,0001	0,0001 0,0001	0,00000003
Tetrachlormethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
AOX 2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	<	0,01		0,01	0,01 0,00001	0,000001972
Atrazin	mg/l	<	0,00001		0,00001	0,00001	0,000000001
Bentazon Chloridaren	mg/l	<	0,00002		0,00002	0,00002 0,00004	0,000000002
Chloridazon Chlortoluron	mg/l mg/l	<	0,00004		0,00004		0,000000004
Clopyralid	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Desethylatrazin Dicamba	mg/l	<	0,00002		0,00002	0,00002 0,00001	0,000000002
Dichlorprop (2,4-DP)	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Diffurenican Diuron	mg/l mg/l	<	0,00005		0,00005	0,00005 0,00003	0,000000015
Isoproturon	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
MCPA	mg/l	< <	0,00002		0,00002		0,000000002
Mecoprop (MCPP) Metalaxyl	mg/l mg/l	<	0,00002		0,00002	0,00002 0,00007	0,000000017
Metazachlor	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Methabenzthiazuron Metobromuron	mg/l	<	0,00004		0,00004		0,000000004
Metolachior	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Metribuzin Simazin	mg/l	<	0,00002		0,00002	0,00002 0,00001	0,000000000
Terbuthylazin	mg/l mg/l	<	0,00001		0,00001	0,00001	0,000000001
Geruchsart	ohne						0.000407405
Koloniezahl bei 20°, KBE/ml Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne ohne		0		12		
2,6-Dichlorbenzamid	mg/l	<	0,00005		0,00005	0,00005	
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne		17		53 0	35	
Enterokokken, KBE/100 ml	ohne		0		0	0	0
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l	H-	0		0		
Clostridium perfringens, KBE/100 ml	ohne		0		0		
pH-Wert (vor Ort gemessen)	ohne	_	7,12		7,21	7,164999962	0,063627099
Flurtamone	mg/l mg/l	<	0,00005	<	0,00005	0,00005 0,00005	0,000000015
Färbungsart	ohne		-,		-,	-,	-,
Redoxspannung gg. Ag/AgCI-Elek Summe LHKW gemäß LfW	mV mg/l	<	-85 0,0001		-27 0,0001	-56 0,0001	41,01219331 0,00000003
Härtebereich gemäß WRMG 2007	ohne				-,		
Calcium-Härte in °dH Magnasium-Härte in °dH	°dH		13,594 1,306		14		0,287080151 0,044548152
Magnesium-Härte in °dH Färbung, qualitativ-Intensität	ohne		1,306		1,369	1,00/499976	0,044048152
Geruch, qualitativ-Intensität	ohne		7.00			7 4050000	0.00444057
pH-Wert bei Messtemperatur Metazachlor-Säure (Metabolit BH 479-4)	ohne mg/l		7,09 0,00005		7,12 0,00005		0,021146374
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00005		0,00005	0,00005	
	mg/l		0,00063 0,00017		0,00063		
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)					0,00017		
Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Säure (Metabolit M23)	mg/l mg/l	<	0,00005				
Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Säure (Metabolit M23) Flufenacet-Säure	mg/l mg/l mg/l	< <	0,00005	<	0,00005		
Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Saure (Metabolit M23) Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l mg/l mg/l	< < <		<	0,00005	0,00005 0,00005	
Dmethenamid-Sulfon säure (Metabolit M27) Dmethenamid-Säure (Metabolit M23) Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045) Metalaxyl-Dicarbonsäure (Metabolit CGA 108906) S-Metolachior (Met. CGA 351916)	mg/l mg/l mg/l mg/l mg/l mg/l	<	0,00005 0,00005 0,00005 0,00037	< <	0,00005 0,00005 0,00037	0,00005 0,00037	
Dmethenamid-Sulfon säure (Metabolit M27) Dmethenamid-Säure (Metabolit M23) Flufenacet-Säure (Metabolit M23) Flufenacet-Säure (Metabolit CGA 62826/NOA 409045) Metalayy-Lostronsäure (Metabolit CGA 108906) S-Metolachlor (Met: CGA 351916) Dimethenamid-P	mg/l mg/l mg/l mg/l mg/l mg/l	<	0,00005 0,00005 0,00037 0,00002	< < <	0,00005 0,00005 0,00037 0,00002	0,00005 0,00005 0,00037 0,00002	
Dmethenamic-Sulfon säure (Metabolit MZ7) Dmethenamic-Säure (Metabolit M23) Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045) Metalaxyl-Dicarbonsäure (Metabolit CGA 108906) S-Metolachior (Met-CGA 351916) Dimethenamic (Metabolit CGA 357704 S-Metolachior Metabolit CGA 357704 S-Metolachior Julifon säure (Metabolit CGA 368208)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	<	0,00005 0,00005 0,00005 0,00037 0,00002 0,00012 0,00006	< < <	0,0005 0,0005 0,00037 0,0002 0,00012 0,0006	0,0005 0,0005 0,00037 0,00002 0,00012 0,0006	
Dmethenamid-Sulfon säure (Metabolit M27) Dmethenamid-Säure (Metabolit M23) Flufenacel-Säure Metalasyl-Säure (Metabolit CGA 62626/NOA 409045) Metalasyl-Süure Metalasyl-Süure Metalasyl-Süure Metalasyl-Süure Metalasyl-Süure Metabolit CGA 351916) S-Metolachlor Metabolit CGA 357704 S-Metolachlor Sulfonsäure Metabolit CGA 368208) S-Metolachlor-Sulfonsäure Metabolit CGA 368208)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	<	0,00005 0,00005 0,00005 0,000037 0,00002 0,00012 0,00006 0,00033	< < <	0,0005 0,0005 0,00037 0,00002 0,00012 0,0006 0,0003	0,00005 0,00005 0,00037 0,00002 0,00012 0,00006 0,00033	0,000000002
Dmethenamid-Sulfon säure (Metabolit M27) Dmethenamid-Säure (Metabolit M23) Flufenacet-Säure (Metabolit M23) Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045) S-Metolachior (Met. CGA 351916) Dimethenamid-P S-Metolachior Metabolit CGA 357704 S-Metolachior Metabolit CGA 368208) S-Metolachior-Sulfonsäure (Metabolit CGA 368208) S-Metolachior-Sulfonsäure (Metabolit CGA 368208) S-Metolachior-Sulfonsäure (Metabolit NOA 413173) Leitfänigket, elektr. bei 25°C, vor Ort Flufenacet (Met. ESA)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	< < <	0,0005 0,0005 0,0005 0,00037 0,00002 0,00012 0,0006 0,00033 693 0,0005	< < <	0,0005 0,0005 0,00037 0,00002 0,00012 0,00016 0,00033 712 0,00005	0,00005 0,00037 0,00037 0,00002 0,00012 0,00006 0,00033 702,5	0,000000002
Dmethenamid-Sulfon saure (Metabolit M27) Dimethenamid-Saure (Metabolit M23) Flufenaced-Saure Metalayyl-Saure (Metabolit CGA 62826/NOA 409045) Metalayyl-Diarchonsaure (Metabolit CGA 108906) S-Metolachior (Met: CGA 351916) Dimethenamid-P S-Metolachior-Metabolit CGA 357704 S-Metolachior-Sulfonsaure (Metabolit CGA 368208) S-Metolachior-Sulfonsaure (Metabolit NOA 413173) Lettfahigkett, deletr, bel 25°C, vor Ort	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	<	0,0005 0,0005 0,0005 0,00037 0,00002 0,00012 0,0006 0,00033 693	< < <	0,0005 0,0005 0,00037 0,00002 0,00012 0,0006 0,00033 712	0,00005 0,00037 0,00037 0,00037 0,00002 0,00003 702,5 0,00005 0,00005	0,00000002

Horizontalfilterbrunnen "Vohren V" (Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

					lem Jahr 2016)		
Parameter Trübung, qualitativ	ohne	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ	ohne						
Geruch, qualitativ Wassertemperatur	°C		10,1		13,3	12,200 000 13	1,819339177
Wassertemperatur (=>KB8,2) Wassertemperatur (=>KS4,3)	°C		12,7 10,5		19,7 18.3	16,20000029 14,39999962	4,94974763 5,515433447
Wassertemperatur (=>pH)	°C		10,3		13,3	11,80000019	2,121319013
Leitfähigkeit, elektr. bei 25°C SAK 436 nm, Färbung	µS/cm 1/m		711 0,32		810 0,35	760,5 0,334999993	70,00357134 0,02121323
SAK 254 nm, UV-Absorption	1/m mV		11 207		12 220	11,5 213.5	0,707106781 9,192388155
Redoxspannung Eh (E) Säurekapazität bis pH 4,3	mmol/l		4,18		4,2	4,189999819	0,014116555
Basekapazität bis pH 8,2 Gesamthärte in *dH	mmol/l °dH		0,52 14,8		0,53 14,9	0,524999976 14,84999991	0,007071739 0,070772287
Karbonathärte in *dH	*dH		11,7		11,8	11,75	0,070745196
Nitrat-Stickstoff (NO3-N) Nitrit-Stickstoff (NO2-N)	mg/l mg/l		0,8946 0,0426		1,5 0,055	1,197299987 0,048799999	0,428082473
Ammonium-Stickstoff (NH4-N)	mg/l		0,1165		0,13	0,123249996	0,00954597
Summe Kationen (ext. ber.) Summe Anionen (ext. ber.)	meq/I		7,15 7,22		7,88 8,01	7,515000105 7,61500001	0,516188467 0,55861224
Ionenbilanzfehler (ext. ber.)	%		-1,7		-0,889	-1,294500023	0,57346358 0,014152409
Summe Erdalkalien (mmol/l) Sauerstoff, gelöst	mmol/l mg/l		2,64 0,35		2,66	2,650000095 1,174999997	1,166726193
Kohlendioxid, gel. DOC	mg/l mg/l		22,9 4,2		23,3 4,7	23,09999943 4,449999809	0,2828067 0,35355215
TOC	mg/l		4,4		4,8	4,600000143	0,282840757
Aluminium (AI), gesamt Ammonium (NH4)	mg/l mg/l	<	0,01 0,15	<	0,01	0,01 0,160000004	0,000001972 0,014142122
Arsen (As)	mg/l	_	0,0011	_	0,0012	0,00115	0,00007071
Blei (Pb) Bor (B)	mg/l mg/l		0,001 0,066		0,001	0,001 0,074000001	0,00000018 0,01131372
Cadmium (Cd) Calcium (Ca)	mg/l	<	0,0002 96,8	<	0,0002 97,1	0,0002 96,95000076	0,00000006
Chlorid (CI)	mg/l mg/l		60,7		87,5	74,10000038	0,212355261 18,9504585
Chrom (Cr), gesamt Cyanid (Cn), gesamt	mg/l mg/l	<	0,001	<	0,001	0,001	0,0000018
Eisen (Fe), gesamt	mg/l		1,638		1,852	1,745000005	0,151320546
Fluorid (F) Hydrogencarbonat (HCO3)	mg/l mg/l	<	0,1 255,051	<	0,1 256,271	0,100000001 255,6609955	0,000028628 0,861863171
Kalium (K)	mg/l		10,8		13,1	11,95000029	1,626348429
Magnesium (Mg) Mangan (Mn), gesamt	mg/l mg/l		5,59 0,792		5,72 0,805	5,654999971 0,798500001	0,091934124 0,009195331
Natium (Na) Nickel (Ni)	mg/l		33,7 0,0023		49,6 0,0023	41,64999962 0.0023	11,24299956 0.00000648
Nitrat (NO3)	mg/l mg/l		3,96		6,42	5,190000057	1,739482546
Nitrit (NO2) Phosphat (PO4), ortho-	mg/l mg/l	-	0,14 0,1	4	0,18	0,160000004 0,100000001	0,028284246 0,000028628
Quecksilber (Hg), gesamt	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Sulfat (SO4) 1,1,1-Trichlorethan	mg/l	<	57,7 0,0001	<	62,4 0,0001	60,05000114 0,0001	3,323404592 0,00000003
Dichlormethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Tetrachlorethen (PER) Trichlorethen (TRI)	mg/l mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Tetrachlormethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
AOX 2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l mg/l	< <	0,01	<	0,011	0,0105 0,00001	0,000707107
Atrazin	mg/l	< <	0,00001	<	0,00001	0,00001 0,00002	0,000000001
Bentazon Chloridazon	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000002
Chlortoluron Clopyralid	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Desethylatrazin	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Dicamba Dichlorprop (2,4-DP)	mg/l mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Diflufenican	mg/l	< <	0,00005	<	0,00005	0,00005	0,00000015
Diuron Isoproturon	mg/l mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l	< <	0,00002 0,00002	< <	0,00002	0,00002 0,00002	0,000000002
Metalaxyl	mg/l mg/l	<	0,00007	<	0,00007	0,00007	0,00000017
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002 0,00004	<	0,00002	0,00002 0,00004	0,000000002
Metobromuron	mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metolachior Metribuzin	mg/l mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Simazin	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Terbuthylazin Geruchsart	mg/l ohne	<	0,00001	<	0,00001	0,00001	0,00000001
Koloniezahl bei 20°, KBE/ml	ohne		0		0	0	0
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml 2,6-Dichlorbenzamid	ohne mg/l	<	0,00005	<	0,00005	0,666666667	1,154700538
Stickstoff (N), anorg. Trübung, quantitativ (in FNU/NTU)	mg/l ohne		1,6 17		1,6 19	1,600000024	1,414213562
Escherichia coli, KBE/100 m1	ohne		0		0	0	0
Enterokokken, KBE/100 ml Coliforme Bakterien, KBE/100 ml	ohne		0		0	0	
Summe PSM u. Biozidprodukte	mg/l		0		0,00003	0,000015	0,000021213
Clostridium perfringens, KBE/100 ml pH-Wert (vor Ort gemessen)	ohne		7,14		7,26	7,200000048	1,732050808 0,084859179
Flufenacet	mg/l	<	0,00005	<	0,00005	0,00005	0,00000015
Flurtamone Färbungsart	mg/l ohne	<	0,00005	<	0,00005	0,00005	0,000000015
Redoxspannung gg. Ag/AgCl-Elek	mV	_	-10	_	0.0001	-4,5 0.0001	
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/l ohne	*	0,0001	*	0,0001	0,0001	0,00000003
Calcium-Härte in °dH Magnesium-Härte in °dH	°dH		13,552 1,286		13,594 1,316	13,57299995 1,300999999	0,029689604 0,021214859
Färbung, qualitativ-Intensität	ohne		1,200		1,010	1,000000000	0,02 12 14 008
Geruch, qualitativ-Intensität pH-Wert bei Messtemperatur	ohne		7,23		7,23	7,230000019	0,001138523
Metazachlor-Säure (Metabolit BH 479-4)	mg/l		0,00008		0,00008	0,00008	2,00.700020
Metazachlor-Sulfonsäure (Metabolit BH 479-8) S-Metolachlor-Sulfonsäure (Met. CGA 380168)	mg/l mg/l		0,00011		0,00011	0,00011 0,00058	
Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l	_	0,00015	_	0,00015	0,00015	
Dimethenamid-Säure (Metabolit M23) Flufenacet-Säure	mg/l mg/l	<	0,00005 0,00005	<	0,00005 0,00005	0,00005	
Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045) Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l mg/l	< <	0,00005 0,00005	< <	0,00005	0,00005 0,00005	
S-Metolachlor (Met: CGA 351916)	mg/l		0,00056		0,00056	0,00056	
Dimethenamid-P S-Metolachlor Metabolit: CGA 357704	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00015	0,000000002
S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	mg/l		0,00008		0,00008	0,00008	
S-Metolachlor-Sulfonsäure (Metabolit NOA 413173) Leitfähigkeit, elektr. bei 25°C, vor Ort	mg/l µS/cm		0,00045 711		0,00045 810	0,00045 760,5	70,00357134
Flufenacet (Met: ESA)	mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachlor Metabolit: CGA 50267 S-Metolachlor Metabolit: CGA 50720	mg/l mg/l	<	0,00005 0,00005	<	0,00005 0,00005	0,00005 0,00005	
Fluopicolide	mg/l	<	0,00002	<	0,00002	0,00002	

Horizontalfilterbrunnen "Dackmar I" erte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

			eruntersuchung				0.441
Parameter Trübung, qualitativ	ohne	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ Geruch, qualitativ	ohne						
Wassertemperatur	°C		10,3		10,7	10,53333346	0,208169043
Wassertemperatur (=>KB8,2) Wassertemperatur (=>KS4,3)	°C		10,2 14,6		19,8 19,7	14,99999952 17,15000057	6,788225094 3,606243373
Wassertemperatur (=>pH)	°C		10,3		10,7	10,5	0,282845949
Leitfähigkeit, elektr. bei 25°C SAK 436 nm, Färbung	µS/cm 1/m		644 0,24		644 0,29	0,264999993	0,03535533
SAK 254 nm, UV-Absorption	1/m		8,4		8,5	8,449999809	0,070685048
Redoxspannung Eh (E) Säurekapazität bis pH 4,3	mV mmol/l		157 3,74		309 3,78	233 3,75999999	107,4802307 0,028287211
Basekapazität bis pH 8,2 Gesamthärte in *dH	mmol/l °dH		0,39 14,2		0,39 14,6	0,389999986 14,4000001	0,000117796 0,282838397
Karbonathärte in °dH	*dH		10,5		10,6	10,55000019	0,070712027
Nitrat-Stickstoff (NO3-N) Nitrit-Stickstoff (NO2-N)	mg/l mg/l		2,1641 0,0365		2,3494 0,0396	2,256749988 0,03805	0,131027156 0,002192039
Ammonium-Stickstoff (NH4-N)	mg/l		0,1009		0,1087	0,104800001	0,0055154
Summe Kationen (ext. ber.) Summe Anionen (ext. ber.)	meq/I		6,41 6,54		6,52 6,61	6,464999914 6,575000048	0,077766979
Ionenbilanzfehler (ext. ber.)	%		-1,91		-1,35	-1,629999995	0,395979848
Summe Erdalkalien (mmol/l) Sauerstoff, gelöst	mmol/l mg/l		2,53 0,2		2,6 4,5	2,564999938 2,350000001	0,049495437 3,040559157
Kohlendioxid, gel.	mg/l		17,2		17,2	17,20000076	0,001104854
TOC TOC	mg/l mg/l		3,5 3,5		3,7 3,8	3,600000024 3,649999976	0,141422031 0,212131866
Aluminium (Al), gesamt	mg/l	<	0,01	<	0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,001		0,0011	0,134999998 0,00105	0,00707111
Blei (Pb) Bor (B)	mg/l	<	0,001 0,049	<	0,001 0,055	0,001 0,051999999	0,00000018 0,004242645
Cadmium (Cd)	mg/l mg/l	<	0,0002	<	0,0002	0,001999999	0,00000006
Calcium (Ca) Chlorid (Cl)	mg/l mg/l		93 44,5		95,5 44,8	94,25 44,64999962	1,767766953 0,212096965
Chrom (Cr), gesamt	mg/l	<	0,001	<	0,001	0,001	0,00000018
Cyanid (Cn), gesamt Eisen (Fe), gesamt	mg/l mg/l	<	0,005 1,388	<	0,005 1,435	0,005 1,411499977	0,000000986 0,033234672
Fluorid (F)	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Hydrogencarbonat (HCO3) Kallium (K)	mg/l mg/l	<u> </u>	228,204 7,7		230,644 7,93	229,423996 7,814999819	1,724815504 0,162640415
Magnesium (Mg)	mg/l		5,17		5,24	5,204999924	0,049499802
Mangan (Mn), gesamt Natrium (Na)	mg/l		0,627 24,2		0,637 24,4	0,631999999 24,30000019	0,007069898 0,141355794
Nickel (Ni)	mg/l	<	0,002	<	0,002	0,002	0,00000036
Nitrat (NO3) Nitrit (NO2)	mg/l mg/l		9,58 0,12		10,4 0,13	9,989999771 0,124999996	0,579823468 0,007071128
Phosphat (PO4), ortho-	mg/l	< <	0,1	< <	0,1 0,0001	0,100000001 0,0001	0,000028628
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l	_	66,1	`	67,6	66,84999847	1,060723613
1,1,1-Trichlorethan Dichlormethan	mg/l mg/l	<	0,0001	<	0,0001	0,0001 0,0001	0,00000003
Tetrachlorethen (PER)	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Trichlorethen (TRI) Tetrachlormethan	mg/l mg/l	<	0,0001		0,0001	0,0001 0,0001	0,00000003
AOX	mg/l	<	0,01	<	0,01	0,01	0,000001972
2,4-Dichlorphenoxyessigsäure (2,4-D) Atrazin	mg/l mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Bentazon	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Chloridazon Chlortoluron	mg/l mg/l	<	0,00004		0,00004	0,00004 0,00004	0,000000004
Clopyralid	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Desethylatrazin Dicamba	mg/l	<	0,00002		0,00002	0,00002 0,00001	0,0000000000000000000000000000000000000
Dichlorprop (2,4-DP)	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Diffufenican Diuron	mg/l	<	0,00005	<	0,00005	0,00005 0,00003	0,000000015
Isoproturon MCPA	mg/l	< <	0,00003	<	0,00003	0,00003	0,000000004
Mecoprop (MCPP)	mg/l mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Metalaxyl Metazachlor	mg/l mg/l	<	0,00007 0,00002		0,00007	0,00007 0,00002	0,000000017
Methabenzthiazuron	mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metobromuron Metolachlor	mg/l mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metribuzin	mg/l	<	0,00002		0,00002	0,00002	0,000000002
Simazin Terbuthylazin	mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Geruchsart	ohne		0,00001		0,00001	0,0001	0,00000001
Koloniezahl bei 20°, KBE/ml Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne		0		0	0	
2,6-Dichlorbenzamid	mg/l	<	0,00005	<	0,00005	0,00005	
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne		12		12	12	
Enterokokken, KBE/100 ml	ohne		0		0	0	
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l		0		1 0	0,333333333	0
Clostridium perfringens, KBE/100 ml pH-Wert (vor Ort gemessen)	ohne		7,31		7,37	7.339999914	0
Flufenacet	mg/l	<	0,00005		0,00005	0,00005	0,00000015
Flurtamone	mg/l	<	0,00005		0,00005	0,00005	0,000000015
Färbungsart Redoxspannung gg. Ag/AgCI-Elek	ohne mV		-60		92	16	
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/I ohne	<	0,0001	<	0,0001	0,0001	0,00000003
Calcium-Härte in °dH	°dH		13,02		13,37	13,19500017	0,247495802
Magnesium-Härte in °dH Färbung, qualitativ-Intensität	°dH ohne		1,189		1,205	1,197000027	0,011308997
Geruch, qualitativ-Intensität	ohne					7,000,000	0.04 10010-
pH-Wert bei Messtemperatur Metazachlor-Säure (Metabolit BH 479-4)	ohne mg/l		7,3 0,0001	<u> </u>	7,32 0,0001	7,310000181 0,0001	0,014031854
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00011		0,00011	0,00011	
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l mg/l		0,00074		0,00074	0,00074 0,0003	
Dimethenamid-Säure (Metabolit M23)	mg/l	_	0,00007 0,00005	_	0,00007	0,00007 0,00005	
Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l	<	0,00005	<	0,00005	0,00005	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906) S-Metolachlor (Met: CGA 351916)	mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachlor (Met: CGA 351916) Dimethenamid-P	mg/l mg/l	<	0,00032 0,00002	<	0,00032 0,00002	0,00032 0,00002	0,000000002
S-Metolachlor Metabolit: CGA 357704 S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	mg/l mg/l	<u> </u>	0,00015 0,00005		0,00015 0,00005	0,00015 0,00005	
S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l		0,00042		0,00042	0,00042	
I altithiately alake hal 2500 year Ort	µS/cm	_	644		0,00006	644 0,00006	0
Leitfähigkeit, elektr. bei 25°C, vor Ort Flufenacet (Met: ESA)	ma/I		0.000.08				
Lettrangkert, elektr. bel 25 C, vor Ort Flufenacet (Met: ESA) S-Metolachlor Metabolit: CGA 50267 S-Metolachlor Metabolit: CGA 50720	mg/l mg/l	< <	0,00006 0,00005 0,00005		0,00005	0,00005 0,00005	

Horizontalfilterbrunnen "Dackmar II" werte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

Parameter	DIM	Min G	Min von MW	Max G	Max von MW	Mittelwert von MW	StdAbw von MV
Trübung, qualitativ	ohne	0	MIII VOII MIVV	max_0	max von mvv	mitterwert von mvv	Startow von mv
Färbung, qualitativ	ohne						
Geruch, qualitativ Wassertemperatur	°C		10,7		11	10,84999991	0,21213675
Wassertemperatur (=>KB8,2)	°C		14,3		19,7	17,00000048	3,81837660
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		15 10,7		19,4	17,19999981 10,84999991	3,11126959 0,21213675
Leitfähigkeit, elektr. bei 25°C	µS/cm		638		642	640	2,82842712
SAK 436 nm, Färbung SAK 254 nm, UV-Absorption	1/m 1/m		0,23 8,8		0,29 8,9	0,259999998 8,849999905	0,04242636 0,07069138
Redoxspannung Eh (E)	mV		128		303	215,5	123,743686
Säurekapazität bis pH 4,3	mmol/l		3,55		3,72	3,63499999	0,12020810
Basekapazität bis pH 8,2 Gesamthärte in *dH	*dH		0,5 14		0,51 14,4	0,504999995 14,19999981	0,00707014
Karbonathärte in *dH	*dH		9,94		10,4	10,1699996	0,32525922
Nitrat-Stickstoff (NO3-N) Nitrit-Stickstoff (NO2-N)	mg/l mg/l		2,5979 0,0201		2,9593 0,0244	2,778599977 0,022249999	0,25554863
Ammonium-Stickstoff (NH4-N)	mg/l		0,1087		0,1242	0,116450001	0,01096012
Summe Kationen (ext. ber.) Summe Anionen (ext. ber.)	meg/l		6,35 6,47		6,45 6,71	6,399999857 6,589999914	0,07070420
Ionenbilanzfehler (ext. ber.)	%		-4		-1,98	-2,99000001	1,42835570
Summe Erdalkalien (mmol/l)	mmol/l	_	2,5		2,56	2,529999971	0,04242786
Sauerstoff, gelöst Kohlendioxid, gel.	mg/l mg/l	<	0,2		4,7 22,4	2,449999906 22,19999981	3,18198038 0,28283596
DOC	mg/l		3,6		3,8	3,699999928	0,14142037
TOC Aluminium (AI), gesamt	mg/l mg/l	<	3,6 0,01	<	3,8 0,01	3,699999928	0,14142037
Ammonium (NH4)	mg/l		0,14		0,16	0,149999999	0,01414215
Arsen (As)	mg/l	-	0,0017	-	0,0018	0,00175	0,00007071
Blei (Pb) Bor (B)	mg/l mg/l	<	0,001 0,05	<	0,001 0,054	0,001	0,0000001
Cadmium (Cd)	mg/l	<	0,0002	<	0,0002	0,0002	0,0000000
Calcium (Ca) Chlorid (Cl)	mg/l mg/l		91,6 43,7		94,1 43,9	92,84999847 43,80000114	1,76768417 0,14123025
Chrom (Cr), gesamt	mg/l	<	0,001	<	0,001	0,001	0,0000001
Cyanid (Cn), gesamt Eisen (Fe), gesamt	mg/l mg/l	<	0,005 1,563	<	0,005 1,588	0,005 1,575500011	0,00000098 0,01767836
Fluorid (F)	mg/l	<	1,563	<	1,588	0,100000001	0,01767836
Hydrogencarbonat (HCO3)	mg/l		216,61		226,983	221,7965012	7,33457712
Kalium (K) Magnesium (Mg)	mg/l mg/l		7,83 5,21		8,07 5,27	7,949999809 5,24000001	0,16970026 0,04242189
Mangan (Mn), gesamt	mg/l		0,389		0,398	0,3935	0,00636404
Natrium (Na) Nickel (Ni)	mg/l	_	24,1 0,002	_	24,4 0,002	24,25 0,002	0,21209174
Nickel (NI) Nitrat (NO3)	mg/l mg/l		0,002		0,002	12,30000019	1,13137371
Nitrit (NO2)	mg/l		0,066		0,08	0,072999999	0,00989950
Phosphat (PO4), ortho- Quecksilber (Hg), gesamt	mg/l mg/l	<	0,1 0,0001	<	0,1	0,100000001	0,00002862
Sulfat (SO4)	mg/l		72,3		74	73,15000153	1,20211516
1,1,1-Trichlorethan Dichlormethan	mg/l	<	0,0001	<	0,0001	0,0001 0,0001	0,0000000
Tetrachlorethen (PER)	mg/l mg/l	<	0,0001	<	0,0001	0,0001	0,0000000
Trichlorethen (TRI)	mg/l	<	0,0001	<	0,0001	0,0001	0,0000000
Tetrachlormethan AOX	mg/l mg/l	<	0,0001	<	0,0001	0,0001 0,01	0,0000000
2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	<	0,00001	<	0,00001	0,00001	0,00000000
Atrazin Bentazon	mg/l mg/l	<	0,00001	<	0,00001	0,00001 0,00002	0,00000000
Chloridazon	mg/l	<	0,00004	<	0,00004	0,00004	0,00000000
Chlortoluron	mg/l	<	0,00004	<	0,00004	0,00004	0,00000000
Clopyralid Desethylatrazin	mg/l mg/l	<	0,00003	<	0,00003	0,00003 0,00002	0,00000000
Dicamba	mg/l	<	0,00001	<	0,00001	0,00001	0,00000000
Dichlorprop (2,4-DP) Diflufenican	mg/l mg/l	<	0,00003	<	0,00003	0,00003	0,00000000
Diuron	mg/l	<	0,00003	<	0,00003	0,00003	0,00000000
soproturon MCPA	mg/l	<	0,00003	<	0,00003	0,00003	0,00000000
Mecoprop (MCPP)	mg/l mg/l	<	0,00002	<	0,00002	0,00002	0,00000000
Metalaxyl	mg/l	<	0,00007	<	0,00007	0,00007	0,00000001
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002	<	0,00002	0,00002	0,00000000
Metobromuron	mg/l	<	0,00004	<	0,00004	0,00004	0,00000000
Metribuzin	mg/l mg/l	<	0,00003	<	0,00003	0,00003 0,00002	0,00000000
Simazin	mg/l	<	0,00001	<	0,00001	0,00001	0,00000000
Terbuthylazin	mg/l	<	0,00001	<	0,00001	0,00001	0,00000000
Geruchsart Koloniezahl bei 20°, KBE/ml	ohne ohne		0		0	0	
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne		0		0	0	
2,6-Dichlorbenzamid Trübung, quantitativ (in FNU/NTU)	mg/l ohne	<	0,00005 7,9	<	0,00005	0,00005 9,450000048	2,19203057
Escherichia coli, KBE/100 ml	ohne		0		0	0	2, 10200001
Enterokokken, KBE/100 ml Coliforme Bakterien, KBE/100 ml	ohne		0		0		
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l		0		0		
Clostridium perfringens, KBE/100 ml	ohne		0		0	0	
pH-Wert (vor Ort gemessen) Flufenacet	ohne ma/l	<	7,16 0,00005	<	7,26 0,00005	7,210000038 0.00005	0,07071528
Flurtamone	mg/l	<	0,00005	<	0,00005	0,00005	0,00000001
Färbungsart	ohne		-89		86	4.0	
Redoxspannung gg. Ag/AgCl-Elek Summe LHKW gemäß LfW	mV mg/l	<	0,0001	<	0,0001	-1,5 0,0001	123,743686
Härtebereich gemäß WRMG 2007	ohne						
Calcium-Härte in °dH Magnesium-Härte in °dH	°dH		12,824 1,198		13,174 1,212	12,99900007 1,204999983	0,24750013
Färbung, qualitativ-Intensität	ohne		1,130		1,212	.,22700000	3,000007
Geruch, qualitativ-Intensität bH-Wert bei Messtemperatur	ohne ohne		7,17		7,18	7.174999952	0,00715994
Metazachlor-Säure (Metabolit BH 479-4)	mg/l		0,00008		0,00008	0,00008	J,007 10994
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00007		0,00007	0,00007	
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l mg/l		0,00084		0,00084	0,00084 0,00027	
Dimethenamid-Säure (Metabolit M23)	mg/l		0,00007		0,00007	0,00007	
Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l	< <	0,00005 0,00005	<	0,00005	0,00005 0,00005	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachlor (Met: CGA 351916)	mg/l		0,00032		0,00032	0,00032	
Dimethenamid-P S-Metolachlor Metabolit: CGA 357704	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00019	0,00000000
S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	mg/l		0,00007		0,00007	0,00007	
S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l		0,00046		0,00046	0,00046	2 02040744
Leitfähigkeit, elektr. bei 25°C, vor Ort	mg/l	<	0,00005	<	0,00005	640 0,00005	2,82842712
Flufenacet (Met: ESA)							
Flufenacet (Met: ESA) S-Metolachlor Metabolit: CGA 50267 S-Metolachlor Metabolit: CGA 50720	mg/l mg/l	< <	0,00005 0,00005		0,00005	0,00005	

Vertikalfilterbrunnen "Dackmar 1"

(Mittelwerte a	us den l	Rohwass	eruntersuchun	gen aus d	lem Jahr 2016)		
Parameter	DIM	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Trübung, qualitativ Färbung, qualitativ	ohne						
Geruch, qualitativ	ohne						
Wassertemperatur (=>KB8,2)	*C		10,7 14		10,8 20,7	10,75 17,35000038	0,070745196 4,73761483
Wassertemperatur (=>KS4,3)	°C		10,6		20,3	15,44999981	6,858934746
Wassertemperatur (=>pH) Leitfähigkeit, elektr. bei 25°C	°C μS/cm		10,7 667		10,8 675	10,75 671	0,070745196 5,656854249
SAK 436 nm, Färbung	1/m		0,18		0,47	0,325000003	0,205060957
SAK 254 nm, UV-Absorption Redoxspannung Eh (E)	1/m mV		6,4 163		6,9 234	6,650000095 198.5	0,353554766 50,20458146
Säurekapazität bis pH 4,3	mmol/l		3,6		3,85	3,724999905	0,176776075
Basekapazität bis pH 8,2 Gesamthärte in *dH	*dH		0,32 14,7		0,39 15,1	0,354999989 14,9000001	0,04949742 0,282843454
Karbonathärte in °dH	°dH		10,1		10,8	10,45000029	0,494979621
Nitrat-Stickstoff (NO3-N) Nitrit-Stickstoff (NO2-N)	mg/l mg/l		3,5692 0,0335		4,4728 0,0426	4,020999908 0,03805	0,638941466 0,006434678
Ammonium-Stickstoff (NH4-N)	mg/l		0,2174		0,264	0,240699999	0,032951186
Summe Kationen (ext. ber.) Summe Anionen (ext. ber.)	meg/I		6,68 6,65		6,81 6,8	6,744999886 6,725000143	0,091924409
Ionenbilanzfehler (ext. ber.)	%		-1,77		2,46	0,345000029	2,991061674
Summe Erdalkalien (mmol/l) Sauerstoff, gelöst	mmol/l mg/l		2,62 0,5		2,69 6,3	2,654999971 3,400000095	0,049496806 4,10121947
Kohlendioxid, gel.	mg/l		14,1		17,2	15,65000057	2,192031901
DOC TOC	mg/l		2,9		3 3,2	2,950000048 3,100000024	0,070712364 0,141422874
Aluminium (Al), gesamt	mg/l	<	0,01	<	0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,28		0,34	0,310000002 0,0015	0,042426439 0,000141421
Blei (Pb)	mg/l	<	0,0014	<	0,0016	0,001	0,0000018
Bor (B) Cadmium (Cd)	mg/l	<	0,056 0,0002	<	0,059 0,0002	0,057500001	0,002121286 0,00000006
Calcium (Ca)	mg/l mg/l		95,4	_	97,9	96,65000153	1,767688489
Chlorid (CI)	mg/l	<	46,5 0,001	-	47,6 0,001	47,04999924 0,001	0,777759095 0,00000018
Chrom (Cr), gesamt Cyanid (Cn), gesamt	mg/l mg/l	<	0,005		0,005	0,005	0,000000986
Eisen (Fe), gesamt Fluorid (F)	mg/l mg/l		2,243		2,374	2,308500051 0,100000001	0,092630744 0,000028628
Hydrogencarbonat (HCO3)	mg/l	•	219,661		234,915	227,2879944	10,78624261
Kalium (K) Magnesium (Mg)	mg/l		6,47 5,84		6,69	6,579999924 5,920000076	0,155559549 0,113139108
Mangan (Mn), gesamt	mg/l mg/l		0,557		0,562	0,559499979	0,113139108
Natrium (Na)	mg/l	_	26,4	_	26,7	26,55000019	0,21202672
Nickel (Ni) Nitrat (NO3)	mg/l mg/l	<	0,002	<	0,002	0,002 17,79999971	0,00000036 2,828426734
Nitrit (NO2)	mg/l		0,11		0,14	0,125	0,021213207
Phosphat (PO4), ortho- Quecksilber (Hg), gesamt	mg/l mg/l	<	0,1	<	0,1	0,100000001 0,0001	0,000028628
Sulfat (SO4)	mg/l		66,3		66,6	66,45000076	0,211653516
1,1,1-Trichlorethan Dichlormethan	mg/l mg/l	<	0,0001	<	0,0001	0,0001 0,0001	0,00000003
Tetrachlorethen (PER)	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Trichlorethen (TRI) Tetrachlormethan	mg/l mg/l	<	0,0001	<	0,0001	0,0001 0,0001	0,00000003
AOX	mg/l	<	0,01	<	0,01	0,01	0,000001972
2,4-Dichlorphenoxyessigsäure (2,4-D) Atrazin	mg/l mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Bentazon	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Chloridazon Chlortoluron	mg/l mg/l	<	0,00004		0,00004	0,00004	0,000000004
Clopyralid	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Desethylatrazin Dicamba	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00001	0,0000000002
Dichlorprop (2,4-DP)	mg/l	<	0,00003		0,00003	0,00003	0,000000004
Diffufenican Diuron	mg/l mg/l	<	0,00005	<	0,00005	0,00005	0,000000015
Isoproturon	mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Metalaxyl	mg/l	<	0,00007	<	0,00007	0,00007	0,00000017
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Metobromuron	mg/l	<	0,00004	<	0,00004	0,00004	0,000000004
Metolachior Metribuzin	mg/l mg/l	<	0,00003	<	0,00003	0,00003	0,000000004
Simazin	mg/l	<	0,00001		0,00001	0,00001	0,000000001
Terbuthylazin Geruchsart	mg/l ohne	<	0,00001	<	0,00001	0,00001	0,000000001
Koloniezahl bei 20°, KBE/mI	ohne		0		1	0,5	0,707106781
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml 2,6-Dichlorbenzamid	ohne mg/l	<	0,00005		0,00005	0,00005	0
Trübung, quantitativ (in FNU/NTU)	ohne		18		19	18,5	0,707106781
Escherichia coli, KBE/100 ml Enterokokken, KBE/100 ml	ohne ohne		0		0	0	0
Coliforme Bakterien, KBE/100 ml	ohne		0		0	0	0
Summe PSM u. Biozidprodukte Clostridium perfringens, KBE/100 ml	mg/l ohne		0		0	0	
pH-Wert (vor Ort gemessen)	ohne		7,27		7,46	7,36500001	0,13435424
Flurtamone	mg/l mg/l	<	0,00005 0,00005		0,00005	0,00005	0,00000015
Färbungsart	ohne						
Redoxspannung gg. Ag/AgCl-Elek Summe LHKW gemäß LfW	mV mg/l	<	-54 0,0001	<	0,0001	-18,5 0,0001	50,20458146 0,00000003
Härtebereich gemäß WRMG 2007	ohne						
Calcium-Härte in °dH Magnesium-Härte in °dH	°dH		13,356 1,343		13,706 1,38	13,531 000 14 1,3615 000 25	0,247493807 0,026163774
Färbung, qualitativ-Intensität	ohne		1,040		1,00	1,00700020	2,020100174
Geruch, qualitativ-Intensität pH-Wert bei Messtemperatur	ohne		7,33		7,34	7.335000038	0,006978371
Metazachlor-Säure (Metabolit BH 479-4)	mg/l		0,00009		0,00009	0,00009	0,000010011
Metazachlor-Sulfonsäure (Metabolit BH 479-8) S-Metolachlor-Sulfonsäure (Met: CGA 380168)	mg/l mg/l		0,00012 0,00035		0,00012	0,00012 0,00035	
Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l		0,00009		0,00009	0,00009	
Dimethenamid-Säure (Metabolit M23) Flufenacet-Säure	mg/l mg/l	٧ ٧	0,00005 0,00005		0,00005 0,00005	0,00005 0,00005	
Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l	<	0,00005	<	0,00005	0,00005	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906) S-Metolachlor (Met: CGA 351916)	mg/l mg/l	<	0,00005	<	0,00005	0,00005 0,00023	
Dimethenamid-P	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
S-Metolachlor Metabolit: CGA 357704 S-Metolachlor-Sulfonsäure (Metabolit CGA 368208)	mg/l mg/l		0,00011		0,00011	0,00011 0,00008	
S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l		0,00027		0,00027	0,00027	
Leitfähigkeit, elektr. bei 25°C, vor Ort Flufenacet (Met: ESA)	µS/cm mg/l	<	0,00005	<	675 0,00005	671 0,00005	5,656854249
S-Metolachlor Metabolit: CGA 50267	mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachior Metabolit: CGA 50720	mg/l	< <	0,00005		0,00005	0,00005	0.000000000
Fluopicolide	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002

Vertikalfilterbrunnen "Dackmar 3" (Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

Parameter	DIM				May you MW	Mittelwert von MW	StdAbw von MW
Trübung, qualitativ	ohne	MIII_G	MIN VON MVV	max_G	Max von Mvv	Mitterwert von MVV	StuADW VOII MVV
Färbung, qualitativ Geruch, qualitativ	ohne ohne						
Wassertemperatur	°C		10,6 15,8		10,6 20,6	10,60000038 18,20000029	0,000552427 3,394111729
Wassertemperatur (=>KB8,2) Wassertemperatur (=>KS4,3)	°C		10,9		20,8	15,84999943	7,000355692
Wassertemperatur (=>pH) Leitfähigkeit, elektr. bei 25°C	°C μS/cm		10,3 640		10,6 642	10,45000029 641	0,212132619 1,414213562
SAK 436 nm, Färbung	1/m		0,19		0,28	0,234999999	0,063639623
SAK 254 nm, UV-Absorption Redoxspannung Eh (E)	1/m mV		8,2 178		8,9 253	8,549999714 215,5	0,494973841 53,03300859
Säurekapazität bis pH 4,3 Basekapazität bis pH 8,2	Mlomm Nomm		3,84 0,39		3,9 0,43	3,870000005 0,409999996	0,04243424 0,028284067
Gesamthärte in *dH	°dH		14,3		14,7	14,5	0,282845949
Karbonathärte in *dH Nitrat-Stickstoff (NO3-N)	°dH mg/l		10,8 4,2695		10,9 4,7891	10,84999991 4,529299974	0,070718365 0,367412247
Nitrit-Stickstoff (NO2-N) Ammonium-Stickstoff (NH4-N)	mg/l mg/l		0,0457 0,1553		0,0518 0,1941	0,04875 0.174700007	0,004313369 0,027435772
Summe Kationen (ext. ber.)	meq/I		6,39		6,51	6,450000048	0,084869012
Summe Anionen (ext. ber.) Ionenbilanzfehler (ext. ber.)	meq/I %		6,51 -2,16		6,53 -0,0524	6,520000219 -1,106200043	0,014206242 1,490298289
Summe Erdalkalien (mmol/l)	mmol/l		2,54		2,62	2,579999924	0,056566938
Sauerstoff, gelöst Kohlendioxid, gel.	mg/l mg/l		0,3 17,2		5,8 18,9	3,050000101 18,05000019	3,88908755 1,202083416
DOC TOC	mg/l mg/l		3,3 3,4		3,8 3,8	3,549999952 3,600000024	0,353552892
Aluminium (AI), gesamt	mg/l	<	0,01	<	0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,0016		0,25 0,0016	0,225000001 0,0016	0,03535536
Blei (Pb)	mg/l	<	0,001	<	0,001	0,001	0,00000018
Bor (B) Cadmium (Cd)	mg/l mg/l	<	0,055	<	0,057 0,0002	0,056 0,0002	0,001414239
Calcium (Ca) Chlorid (Cl)	mg/l mg/l		93,3 41,4		96,1 41,5	94,70000076 41,45000076	1,979973974 0,070402503
Chrom (Cr), gesamt	mg/l	<	0,001	<	0,001	0,001	0,0000018
Cyanid (Cn), gesamt Eisen (Fe), gesamt	mg/l mg/l	<	0,005 1,594	<	0,005 1,702	0,005 1,648000002	0,000000986 0,076367134
Fluorid (F)	mg/l	<	0,1	<	0,1	0,100000001	0,000028628
Hydrogencarbonat (HCO3) Kalium (K)	mg/l mg/l		234,305 7,24		237,966 7,41	236,135498 7,324999809	2,588737493 0,12019489
Magnesium (Mg)	mg/l		5,26 0,525		5,41	5,335000038 0,5255	0,106068639
Mangan (Mn), gesamt Natrium (Na)	mg/l mg/l		23		0,526 23,6	23,30000019	0,424269014
Nickel (Ni) Nitrat (NO3)	mg/l mg/l	<	0,002 18,9	<	0,002 21,2	0,002 20,05000019	0,00000036 1,6263484
Nitrit (NO2)	mg/l		0,15		0,17	0,160000004	0,014142122
Phosphat (PO4), ortho- Quecksilber (Hg), gesamt	mg/l mg/l	<	0,0001		0,1	0,100000001 0,0001	0,000028628
Sulfat (SO4)	mg/l	_	55,3 0,0001	_	55,8	55,54999924	0,353420222
1,1,1-Trichlorethan	mg/l mg/l	<	0,0001	<	0,0001 0,0001	0,0001 0,0001	0,00000003
Tetrachlorethen (PER) Trichlorethen (TRI)	mg/l mg/l	<	0,0001 0,0001	<	0,0001	0,0001 0,0001	0,00000003
Tetrachlormethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
AOX 2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l mg/l	<	0,01	<	0,015	0,0125 0,00001	0,003535535
Atrazin	mg/l	< <	0,00001		0,00001 0,00002	0,00001	0,000000001
Bentazon Chloridazon	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00004	0,0000000002
Chlortoluron Clopyralid	mg/l mg/l	<	0,00004	٧	0,00004	0,00004 0,00003	0,000000004
Desethylatrazin	mg/l	<	0,00002	<	0,00002	0,00002	0,000000002
Dicamba Dichlorprop (2,4-DP)	mg/l mg/l	<	0,00001	<	0,00001	0,00001	0,000000001
Diflufenican	mg/l	<	0,00005	<	0,00005	0,00005	0,000000015
Diuron Isoproturon	mg/l mg/l	<	0,00003	<	0,00003	0,00003 0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l mg/l	<	0,00002	<	0,00002	0,00002 0,00002	0,000000002
Metalaxyl	mg/l	<	0,00007	<	0,00007	0,00007	0,000000017
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002 0,00004	<	0,00002	0,00002 0,00004	0,000000002
Metobromuron	mg/l	<	0,00004		0,00004	0,00004	0,000000004
Metolachior Metribuzin	mg/l mg/l	<	0,00003	<	0,00003	0,00003 0,00002	0,0000000004
Simazin Terbuthylazin	mg/l mg/l	<	0,00001	<	0,00001	0,00001 0,00001	0,000000001
Geruchsart	ohne						
Koloniezahl bei 20°, KBE/ml Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne ohne		0		1 0	0,5	0,707106781
2,6-Dichlorbenzamid	mg/l	<	0,00005		0,00005	0,00005	0.404000044
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne ohne		11		14	12,5	2,121320344 0
Enterokokken, KBE/100 ml Coliforme Bakterien, KBE/100 ml	ohne ohne		0		0	0	0
Summe PSM u. Biozidprodukte	mg/l		0		0	0	
Clostridium perfringens, KBE/100 ml pH-Wert (vor Ort gemessen)	ohne ohne		7,31		7,44	7,375	0,091921458
Flufenacet	mg/l	<	0,00005		0,00005	0,00005	0,000000015
Flurtamone Färbungsart	mg/l ohne	<	0,00005	<	0,00005	0,00005	0,000000015
Redoxspannung gg. Ag/AgCl-Elek	mV	_	-39	_	36	-1,5	53,03300859
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/l ohne	`	0,0001		0,0001	0,0001	0,00000003
Calcium-Härte in °dH Magnesium-Härte in °dH	°dH		13,062 1,21		13,454 1,244	13,25800037 1,226999998	0,277179972 0,024042215
Färbung, qualitativ-Intensität	ohne		1,21		1,244	1,22000000	0,027042213
Geruch, qualitativ-Intensität pH-Wert bei Messtemperatur	ohne ohne		7,29		7,3	7,295000076	0,006991315
Metazachlor-Säure (Metabolit BH 479-4)	mg/l		0,00008		0,00008	0,00008	
Metazachlor-Sulfonsäure (Metabolit BH 479-8) S-Metolachlor-Sulfonsäure (Met: CGA 380168)	mg/l mg/l		0,00016 0,00027		0,00016 0,00027	0,00016 0,00027	
Dimethenamid-Sulfonsäure (Metabolit M27) Dimethenamid-Säure (Metabolit M23)	mg/l mg/l	-	0,00021		0,00021	0,00021 0,00007	
Flufenacet-Säure	mg/l	<	0,00005		0,00005	0,00005	
Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045) Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l mg/l	<	0,00005		0,00005	0,00005 0,00005	
S-Metolachlor (Met: CGA 351916)	mg/l	_	0,00028		0,00028	0,00028	0,000000002
Dimethenamid-P S-Metolachlor Metabolit: CGA 357704	mg/l mg/l		0,00002 0,00013		0,00002 0,00013	0,00002 0,00013	0,000000002
S-Metolachior-Sulfonsäure (Metabolit CGA 368208) S-Metolachior-Sulfonsäure (Metabolit NOA 413173)	mg/l mg/l		0,00011 0,00026	-	0,00011 0,00026	0,00011 0,00026	
Leitfähigkeit, elektr. bei 25°C, vor Ort	µS/cm		640		642	641	1,414213562
Flufenacet (Met: ESA) S-Metolachlor Metabolit: CGA 50267	mg/l mg/l	<	0,00007	<	0,00007	0,00007 0,00005	
S-Metolachlor Metabolit: CGA 50720	mg/l	<	0,00005	<	0,00005	0,00005	0.00000000
Fluopicolide	mg/l	<	0,00002	<	0,00002	0,00002	0,0000000002

Vertikalfilterbrunnen "Dackmar 4" (Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

(Millewelle a	us dell'i	CONVESS	erantersacriun	gen aus v	dem Jahr 2016)		
Parameter	DIM	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Trübung, qualitativ Färbung, qualitativ	ohne ohne						
Geruch, qualitativ	ohne						
Wassertemperatur	°C		10,5		10,5	10,5	
Wassertemperatur (=>KB8,2)	°C		17,5		17,5	17,5	
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C ℃		11,7 9,9		11,7 9,9	11,69999981 9,899999619	
Leitfähigkeit, elektr. bei 25°C	µS/cm		623		623	623	
SAK 436 nm, Färbung	1/m		0,29		0,29	0,289999992	
SAK 254 nm, UV-Absorption	1/m		10		10	10	
Redoxspannung Eh (E)	mV		350		350 3,93	350 3,930000067	
Säurekapazität bis pH 4,3 Basekapazität bis pH 8,2	mmol/l		3,93 0,39		0,39	0,389999986	
Gesamthärte in °dH	°dH		14,3		14,3	14,30000019	
Karbonathärte in °dH	°dH		11		11	11	
Nitrat-Stickstoff (NO3-N)	mg/l		2,9819		2,9819	2,981899977	
Nitrit-Stickstoff (NO2-N)	mg/l		0,0548 0,0458		0,0548 0,0458	0,0548 0.0458	
Ammonium-Stickstoff (NH4-N) Summe Kationen (ext. ber.)	mg/l meq/l		6,28		6,28	6,28000021	
Summe Anionen (ext. ber.)	meq/I		6,44		6,44	6,440000057	
Ionenbilanzfehler (ext. ber.)	%		-2,55		-2,55	-2,549999952	
Summe Erdalkalien (mmol/l)	mmol/l		2,55		2,55	2,549999952	
Sauerstoff, gelöst Kohlendioxid, gel.	mg/l mg/l		3,7 17,2		3,7 17,2	3,700000048 17,20000076	
DOC	mg/l		4,1		4,1	4,099999905	
TOC	mg/l		4,1		4,1	4,099999905	
Aluminium (Al), gesamt	mg/l	<	0,01	<	0,01	0,01	
Ammonium (NH4)	mg/l		0,059		0,059	0,059	
Arsen (As) Blei (Pb)	mg/l	<	0,001		0,001	0,001	
Bor (B)	mg/l mg/l	-	0,001		0,001	0,001	
Cadmium (Cd)	mg/l	<	0,0002	<	0,0002	0,0002	
Calcium (Ca)	mg/l		93,1		93,1	93,09999847	
Chlorid (CI)	mg/l	_	36,8		36,8	36,79999924	
Chrom (Cr), gesamt Cyanid (Cn), gesamt	mg/l	<	0,001		0,001	0,001 0,005	
Eisen (Fe), gesamt	mg/l mg/l	1	0,005	1	0,005	0,43599999	
Fluorid (F)	mg/l	<	0,430	<	0,1	0,100000001	
Hydrogencarbonat (HCO3)	mg/l		239,797		239,797	239,7969971	
Kalium (K)	mg/l		9,11		9,11	9,109999657	
Magnesium (Mg) Mangan (Mn), gesamt	mg/l		5,54 0,472		5,54 0,472	5,539999962 0,472000003	
Natrium (Na)	mg/l mg/l		20,8		20,8	20,79999924	
Nickel (Ni)	mg/l	<	0,002	<	0,002	0,002	
Nitrat (NO3)	mg/l		13,2		13,2	13,19999981	
Nitrit (NO2)	mg/l		0,18		0,18	0,180000007	
Phosphat (PO4), ortho-	mg/l	<	0,1		0,1 0,0001	0,100000001	
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l mg/l	<	60,2	_	60,2	60,20000076	
1,1,1-Trichlorethan	mg/l	<	0,0001	<	0,0001	0,0001	
Dichlormethan	mg/l	<	0,0001	<	0,0001	0,0001	
Tetrachlorethen (PER)	mg/l	<	0,0001	<	0,0001	0,0001	
Trichlorethen (TRI) Tetrachlormethan	mg/l	<	0,0001	<	0,0001	0,0001 0,0001	
AOX	mg/l mg/l	`	0,0001	_	0,0001	0,001	
2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	<	0,00001	<	0,00001	0,00001	
Atrazin	mg/l	<	0,00001		0,00001	0,00001	
Bentazon	mg/l	<	0,00002		0,00002	0,00002	
Chloridazon Chlortoluron	mg/l mg/l	<	0,00004		0,00004	0,00004	
Clopyralid	mg/l	<	0,00003	<	0,00004	0,00004	
Desethylatrazin	mg/l	<	0,00002	<	0,00002	0,00002	
Dicamba	mg/l	<	0,00001	<	0,00001	0,00001	
Dichlorprop (2,4-DP)	mg/l	<	0,00003	<	0,00003	0,00003	
Diffurencan Diuron	mg/l mg/l	<	0,00005	<	0,00005	0,00005 0,00003	
Isoproturon	mg/l	<	0,00003		0,00003	0,00003	
MCPA	mg/l	<	0,00002	<	0,00002	0,00002	
Mecoprop (MCPP)	mg/l	<	0,00002	<	0,00002	0,00002	
Metalaxyl	mg/l	<	0,00007		0,00007	0,00007	
Metazachlor Methabenzthiazuron	mg/l mg/l	<	0,00002 0,00004		0,00002	0,00002 0,00004	
Metobromuron	mg/l	<	0,00004		0,00004	0,00004	
Metolachlor	mg/l	<	0,00003	<	0,00003	0,00003	
Metribuzin	mg/l	<	0,00002	<	0,00002	0,00002	
Simazin	mg/l	<	0,00001		0,00001	0,00001	
Terbuthylazin Geruchsart	mg/l ohne	<	0,00001	<	0,00001	0,00001	
Koloniezahl bei 20°, KBE/ml	ohne		0		0	0	
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne		0		0	0	
Trübung, quantitativ (in FNU/NTU)	ohne		1,7		1,7	1,700000048	
Escherichia coli, KBE/100 ml	ohne		0		0	0	
Enterokokken, KBE/100 ml Coliforme Bakterien, KBE/100 ml	ohne ohne		0		0	0	
Summe PSM u. Biozidprodukte	mg/l		0		0	0	
Clostridium perfringens, KBE/100 ml	ohne		0		0	0	
pH-Wert (vor Ort gemessen)	ohne		7,37		7,37	7,369999886	
Flufenacet	mg/l	<	0,00005		0,00005	0,00005	
Flurtamone Färbungsart	mg/l ohne	<	0,00005	•	0,00005	0,00005	
Redoxspannung gg. Ag/AgCI-Elek	mV		133		133	133	
Summe LHKW gemäß LfW	mg/l	<	0,0001	<	0,0001	0,0001	
Härtebereich gemäß WRMG 2007	ohne						
Calcium-Härte in °dH	°dH		13,034		13,034	13,0340004	
Magnesium-Härte in °dH	°dH		1,274	<u> </u>	1,274	1,274000049	
Färbung, qualitativ-Intensität Geruch, qualitativ-Intensität	ohne						
pH-Wert bei Messtemperatur	ohne		7,35		7,35	7,349999905	
Dimethe namid-P	mg/l	<	0,00002	<	0,00002	0,00002	
Leitfähigkeit, elektr. bei 25°C, vor Ort	μS/cm		623		623	623	
Fluopicolide	mg/l	<	0,00002	<	0,00002	0,00002	

Vertikalfilterbrunnen "Dackmar 6" (Mittelwerte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

				gen aus dem Jahr 2016		
Parameter Trübung, qualitativ	Ohne	Min_G	Min von MW	Max_G Max von MW	Mittelwert von MW	StdAbw von MW
Färbung, qualitativ	ohne					
Geruch, qualitativ Wassertemperatur	ohne °C		10,5	11	10,75	0,353553391
Wassertemperatur (=>KB8,2)	°C		18 12,3	20,8	19,39999962	1,979894749
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		9,9	20,8		6,010406068 0,777819053
Leitfähigkeit, elektr. bei 25°C SAK 436 nm, Färbung	µS/cm 1/m		634 0,22	638		2,828427125 0,07778177
SAK 254 nm, UV-Absorption	1/m		9,1	9,2	9,150000095	0,070718365
Redoxspannung Eh (E) Säurekapazität bis pH 4,3	mV mmol/l		133 3,64	305		121,6223664 0,028275679
Basekapazität bis pH 8,2	mmol/l		0,39	0,43	0,409999996	0,028284067
Gesamthärte in *dH Karbonathärte in *dH	°dH		13,7 10,2	14,1		0,282833339
Nitrat-Stickstoff (NO3-N)	mg/l		1,8366	1,9766	1,906599998	0,098995302
Nitrit-Stickstoff (NO2-N) Ammonium-Stickstoff (NH4-N)	mg/l mg/l		0,0298 0,1242	0,0335 0,1398		0,002616309
Summe Kationen (ext. ber.)	meq/I		6,31 6,44	6,44		0,091942205 0,042444723
Summe Anionen (ext. ber.) Ionenbilanzfehler (ext. ber.)	meg/l %		-2,89	-0,0547		2,004859874
Summe Erdalkalien (mmol/l) Sauerstoff, gelöst	mmol/l mg/l		2,45	2,51		0,04242308 3,111269884
Kohlendioxid, gel.	mg/l		17,2	18,9	18,05000019	1,202083416
TOC TOC	mg/l mg/l		3,5 3,5	3,8		0,212131866 0,282843218
Aluminium (AI), gesamt	mg/l	<	0,01	< 0,01	0,01	0,000001972
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,16	0,18		0,014142099
Blei (Pb)	mg/l	<	0,001	< 0,001	0,001	0,00000018
Bor (B) Cadmium (Cd)	mg/l mg/l	<	0,052	< 0,055		0,002121321 0,00000006
Calcium (Ca)	mg/l		90,1	92,5		1,697069312
Chlorid (CI) Chrom (Cr), gesamt	mg/l mg/l	<	47,4 0,001	48,5 < 0,001		0,777886608
Cyanid (Cn), gesamt	mg/l	<	0,005			0,000000986
Eisen (Fe), gesamt Fluorid (F)	mg/l mg/l	<	1,255 0,1	1,348 < 0,1	0,100000001	0,065760527 0,000028628
Hydrogencarbonat (HCO3)	mg/l		222,102 7,01	224,543 7,11		1,726109564
Kalium (K) Magnesium (Mg)	mg/l mg/l		4,84	4,93	4,88499999	0,070699397 0,063650305
Mangan (Mn), gesamt Natrium (Na)	mg/l mg/l		0,52 26,8	0,528 26,9		0,005658403
Nickel (Ni)	mg/l	<	0,002	< 0,002	0,002	0,0000036
Nitrat (NO3) Nitrit (NO2)	mg/l mg/l		8,13 0,098	8,75		0,438405073 0,00848529
Phosphat (PO4), ortho-	mg/l	<	0,1	0,13	0,114999998	0,02121322
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l mg/l	<	0,0001 63,4	< 0,0001		0,00000003
1,1,1-Trichlorethan	mg/l	<	0,0001	< 0,0001	0,0001	0,00000003
Dichlormethan Tetrachlorethen (PER)	mg/l mg/l	<	0,0001	< 0,0001 < 0,0001		0,00000003
Trichlorethen (TRI)	mg/l	<	0,0001	< 0,0001	0,0001	0,00000003
Tetrachlormethan AOX	mg/l mg/l	<	0,0001	< 0,0001 0,012		0,00000003
2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	< <	0,00001	< 0,00001 < 0,00001		0,000000001
Atrazin Bentazon	mg/l mg/l	<	0,00001			0,000000001
Chloridazon Chlortoluron	mg/l	<	0,00004			0,000000004
Clopyralid	mg/l mg/l	<	0,00003	< 0,00003	0,00003	0,000000004
De sethylatrazin Dicamba	mg/l mg/l	<	0,00002	< 0,00002 < 0,00001		0,000000000
Dichlorprop (2,4-DP)	mg/l	<	0,00003	< 0,00003	0,00003	0,000000004
Diffufenican Diuron	mg/l mg/l	<	0,00005	< 0,00005 < 0,00003		0,000000015
Isoproturon	mg/l	<	0,00003	< 0,00003	0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l mg/l	<	0,00002			0,000000002
Metalaxyl	mg/l	<	0,00007	< 0,00007	0,00007	0,000000017
Methabenzthiazuron	mg/l mg/l	<	0,00002	< 0,00002 < 0,00004		0,0000000002
Metobromuron Metobromuron	mg/l	<	0,00004	< 0,00004 < 0,00003	0,00004	0,000000004
Metolachlor Metribuzin	mg/l mg/l	<	0,00003		0,00003	0,000000004
Simazin Torbuthularia	mg/l	<	0,00001			0,000000001
Terbuthylazin Geruchsart	mg/l ohne	<	0,00001			·
Koloniezahl bei 20°, KBE/ml Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml	ohne ohne		0	1		0,707106781
2,6-Dichlorbenzamid	mg/l	<	0,00005	< 0,00008	0,00005	
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne ohne		8,6	9,5		0,636395953
Enterokokken, KBE/100 ml	ohne		0	(0	0
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l		0			0
Clostridium perfringens, KBE/100 ml	ohne		0	(0	0
pH-Wert (vor Ort gemessen) Flufenacet	ohne mg/l	<	7,27 0,00005	7,36 < 0,00005		0,063649233
Flurtamone	mg/l	<	0,00005			0,000000015
Färbungsart Redoxspannung gg. Ag/AgCl-Elek	ohne mV		-84	88	2	121,6223664
Summe LHKW gemäß LfW	mg/l	<	0,0001			0,00000003
Härtebereich gemäß WRMG 2007 Calcium-Härte in °dH	ohne °dH		12,614	12,95	12,78200007	0,237601906
Magnesium-Härte in °dH	°dH		1,113	1,134	1,12349999	0,014849494
Färbung, qualitativ-Intensität Geruch, qualitativ-Intensität	ohne ohne					
pH-Wert bei Messtemperatur Metazachlor-Säure (Metabolit BH 479-4)	ohne ma/l		7,28 0,00008	7,28		0,00168105
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l mg/l		0,00011	0,00011	0,00011	
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l mg/l		0,00043	0,00043		
Dimethenamid-Säure (Metabolit M23)	mg/l	<	0,00005	< 0,00005	0,00005	
Flufenacet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l	<	0,00005			
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l	<	0,00005	< 0,00005	0,00005	
S-Metolachlor (Met: CGA 351916) Dimethenamid-P	mg/l mg/l	<	0,00021	< 0,00021 < 0,00002		0,0000000002
S-Metolachlor Metabolit: CGA 357704	mg/l		0,00011	0,00011	0,00011	2,230000002
S-Metolachlor-Sulfonsäure (Metabolit CGA 368208) S-Metolachlor-Sulfonsäure (Metabolit NOA 413173)	mg/l mg/l		0,00006			
Leitfähigkeit, elektr. bei 25°C, vor Ort	µS/cm	_	634	638	636	2,828427125
Flufenacet (Met: ESA) S-Metolachlor Metabolit: CGA 50267	mg/l mg/l	<	0,00005 0,00005	< 0,00005	0,00005	
S-Metolachlor Metabolit: CGA 50720	mg/l	< <	0,00005	< 0,00005	0,00005	0.000000000
Fluopicolide	mg/l	<	0,00002	< 0,00002	0,00002	0,000000002

Vertikalfilterbrunnen "Dackmar 9" erte aus den Rohwasseruntersuchungen aus dem Jahr 2016)

(Mittelwerte	aus den l	Rohwass	eruntersuchun	gen aus d	dem Jahr 2016)		
Parameter Tribbana qualitativ	DIM	Min_G	Min von MW	Max_G	Max von MW	Mittelwert von MW	StdAbw von MW
Trübung, qualitativ Färbung, qualitativ	ohne ohne						
Geruch, qualitativ	ohne		40.2		10,3	10,30000019	0.000076.242
Wassertemperatur (=>KB8,2)	°C		10,3 19,8		20,6	20,19999981	0,000276213 0,565693652
Wassertemperatur (=>KS4,3) Wassertemperatur (=>pH)	°C		12,1 9,9		13,6 10,3	12,85000038 10,09999991	1,06065582 0,282846826
Leitfähigkeit, elektr. bei 25°C	µS/cm		669		675	672	4,242640687
SAK 436 nm, Färbung SAK 254 nm, UV-Absorption	1/m 1/m		0,18 6,4		0,29 7,4	0,234999999 6,900000095	0,077781711 0,707108481
Redoxspannung Eh (E)	mV		164		307	235,5	101,1162697
Säurekapazität bis pH 4,3 Basekapazität bis pH 8,2	mmol/l		3,93 0,59		3,94 0,6	3,935000062 0,594999999	0,007079216 0,007070638
Gesamthärte in *dH Karbonathärte in *dH	°dH °dH		15,9 11		16,2 11	16,05000019 11	0,212139137
Nitrat-Stickstoff (NO3-N)	mg/l		4,9924		5,6701	5,331250191	0,479205154
Nitrit-Stickstoff (NO2-N) Ammonium-Stickstoff (NH4-N)	mg/l mg/l		0,0271 0,1242		0,0271	0,0271 000 01 0,1281	0,000005077 0,005515471
Summe Kationen (ext. ber.)	meg/l		6,78		6,89	6,835000038	0,07778897
Summe Anionen (ext. ber.) Ionenbilanzfehler (ext. ber.)	meg/I %		6,94 -2,29		6,97 -1,18	6,954999924 -1,734999955	0,021244506 0,784888424
Summe Erdalkalien (mmol/l)	mmol/l		2,84		2,89	2,86500001	0,035351161
Sauerstoff, gelöst Kohlendioxid, gel.	mg/l mg/l		0,3 26		26,4	2,150000006 26,19999981	2,616295081 0,282808993
DOC TOC	mg/l mg/l		3,3 3,4		3,5 3,6	3,399999976 3,5	0,141420345 0,141419603
Aluminium (AI), gesamt	mg/l	<	0,01		0,014	0,012	0,002828427
Ammonium (NH4) Arsen (As)	mg/l mg/l		0,16		0,17 0,0018	0,164999999 0,00175	0,007071149
Blei (Pb)	mg/l	<	0,001	<	0,001	0,001	0,00000018
Bor (B) Cadmium (Cd)	mg/l mg/l	<	0,046	<	0,05	0,048 0,0002	0,002828453
Calcium (Ca)	mg/l		102		103	102,5	0,707106781
Chlorid (CI) Chrom (Cr), gesamt	mg/l mg/l	<	0,001	<	34,5 0,001	34,25 0,001	0,353553391 0,0000018
Cyanid (Cn), gesamt	mg/l	<	0,005		0,005	0,005	0,000000986
Eisen (Fe), gesamt Fluorid (F)	mg/l mg/l	<	2,094	<	2,131 0,1	2,112500072 0,100000001	0,026156316 0,000028628
Hydrogencarbonat (HCO3)	mg/l		239,797		240,407	240,1019974 8,845000267	0,432102536
Kalium (K) Magnesium (Mg)	mg/l mg/l		8,81 7,43		8,88 7,66	7,544999838	0,049450109 0,162640314
Mangan (Mn), gesamt Natrium (Na)	mg/l mg/l		0,612 17,6		0,635 17,9	0,62349999 17,75	0,016263324 0,212091749
Nickel (Ni)	mg/l	<	0,002		0,002	0,002	0,00000036
Nitrat (NO3) Nitrit (NO2)	mg/l mg/l		22,1 0,089		25,1 0,089	23,600 000 38 0,0890 000 02	2,121315021 0,000023004
Phosphat (PO4), ortho-	mg/l	<	0,1		0,1	0,100000001	0,000028628
Quecksilber (Hg), gesamt Sulfat (SO4)	mg/l mg/l	<	0,0001 79,6		0,0001 80,7	0,0001 80,14999771	0,00000003 0,7779125
1,1,1-Trichlorethan	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003
Dichlormethan Tetrachlorethen (PER)	mg/l mg/l	<	0,0001		0,0001	0,0001 0,0001	0,00000003
Trichlorethen (TRI)	mg/l	<	0,0001		0,0001	0,0001	0,00000003
Tetrachlormethan AOX	mg/l	<	0,0001	<	0,0001	0,0001	0,00000003 0,001414215
2,4-Dichlorphenoxyessigsäure (2,4-D)	mg/l	<	0,00001		0,00001	0,00001	0,000000001
Atrazin Bentazon	mg/l mg/l	<	0,00001		0,00001	0,00001 0,00002	0,000000001
Chloridazon	mg/l	<	0,00004		0,00004	0,00004	0,000000004
Chlortoluron Clopyralid	mg/l mg/l	<	0,00004		0,00004	0,00004 0,00003	0,000000004
Desethylatrazin Dicamba	mg/l mg/l	< <	0,00002		0,00002	0,00002 0,00001	0,000000002
Dichlorprop (2,4-DP)	mg/l	<	0,00003		0,00003	0,00003	0,000000004
Diffufenican Diuron	mg/l mg/l	<	0,00005	<	0,00005	0,00005	0,00000015
Isoproturon	mg/l	<	0,00003		0,00003	0,00003	0,000000004
MCPA Mecoprop (MCPP)	mg/l mg/l	<	0,00002		0,00002	0,00002 0,00002	0,000000002
Metalaxyl	mg/l	<	0,00007	<	0,00007	0,00007	0,000000017
Metazachlor Methabenzthiazuron	mg/l	<	0,00002		0,00002	0,00002 0.00004	0,000000002
Metobromuron	mg/l	<	0,00004		0,00004	0,00004	0,000000004
Metolachlor Metribuzin	mg/l mg/l	<	0,00003		0,00003	0,00003	0,000000004
Simazin	mg/l	<	0,00001		0,00001	0,00001	0,000000001
Terbuthylazin Geruchsart	mg/l ohne	<	0,00001	<	0,00001	0,00001	0,000000001
Koloniezahl bei 20°, KBE/ml	ohne		0		0	0	0
Koloniezahl bei 36°C (TrinkwV 1990/2001), KBE/ml 2,6-Dichlorbenzamid	ohne mg/l	<	0,00005		0,00005	0,00005	
Trübung, quantitativ (in FNU/NTU) Escherichia coli, KBE/100 ml	ohne		11		12	11,5	0,707106781
Enterokokken, KBE/100 ml	ohne		0		0	0	0
Coliforme Bakterien, KBE/100 ml Summe PSM u. Biozidprodukte	ohne mg/l		0		0		0
Clostridium perfringens, KBE/100 ml	ohne		0		0	0	0
pH-Wert (vor Ort gemessen) Flufenacet	ohne mg/l	<	7,14 0,00005		7,23 0,00005	7,184999943 0,00005	0,063641741 0,000000015
Flurtamone	mg/l	<	0,00005		0,00005	0,00005	0,000000015
Färbungsart Redoxspannung gg. Ag/AgCI-Elek	ohne mV		-53		90	18,5	101,1162697
Summe LHKW gemäß LfW Härtebereich gemäß WRMG 2007	mg/l ohne	<	0,0001	<	0,0001	0,0001	0,00000003
Calcium-Härte in °dH	°dH		14,28		14,42	14,34999991	0,099009279
Magnesium-Härte in °dH Färbung, qualitativ-Intensität	°dH ohne		1,709		1,762	1,735499978	0,037476309
Geruch, qualitativ-Intensität	ohne						
pH-Wert bei Messtemperatur Metazachlor-Säure (Metabolit BH 479-4)	ohne mg/l	_	7,13 0,00006		7,16 0,00006	7,144999981 0,00006	0,021247603
Metazachlor-Sulfonsäure (Metabolit BH 479-8)	mg/l		0,00008		0,00008	0,00008	
S-Metolachlor-Sulfonsäure (Met: CGA 380168) Dimethenamid-Sulfonsäure (Metabolit M27)	mg/l mg/l		0,0005		0,0005	0,0005 0,00012	
Dimethenamid-Säure (Metabolit M23)	mg/l	<	0,00005	<	0,00005	0,00005	
Flufen acet-Säure Metalaxyl-Säure (Metabolit CGA 62826/NOA 409045)	mg/l mg/l	<	0,00005 0,00005		0,00005	0,00005 0,00005	
Metalaxyl-Dicarbonsäure (Metabolit CGA 108906)	mg/l	<	0,00005	<	0,00005	0,00005	
S-Metolachlor (Met: CGA 351916)	mg/l	<	0,00016 0,00002		0,00016 0,00002	0,00016 0,00002	0,000000002
Dimethenamid-P	mg/l					0,00013	
Dimethenamid-P S-Metolachlor Metabolit: CGA 357704	mg/l		0,00013		0,00013		
Dimethenamid-P S-Metolachior Metabolit: CGA 357704 S-Metolachior-Sulfonsaure (Metabolit CGA 368208) S-Metolachior-Sulfonsaure (Metabolit NOA 413173)	mg/l mg/l mg/l	<	0,00005 0,00035	<	0,00005 0,00035	0,00005 0,00035	
Dimethenamid-P S-Metolachlor Metabolit: CGA 357704 S-Metolachlor-Sulfonsåure (Metabolit CGA 368208) S-Metolachlor-Sulfonsåure (Metabolit NOA 413173) Leitfähigkeit, elektr. bei 25°C, vor Ort	mg/l mg/l mg/l µS/cm	<	0,00005 0,00035 669	<	0,00005 0,00035 675	0,00005 0,00035 672	4,242640687
Dimethenamid-P S-Metolachior Metabolit: CGA 357704 S-Metolachior-Sulfonsaure (Metabolit CGA 368208) S-Metolachior-Sulfonsaure (Metabolit NOA 413173)	mg/l mg/l mg/l		0,00005 0,00035	< < <	0,00005 0,00035	0,00005 0,00035	4,242640687

Trinkwasseranalyse (Jahresmittelwerte aus 2016) Anlage 17

Hammer Straße 42, 59269 Beckum Tel. 02521 843-0, Fax 02521 843-50 Email: info@wb.net, Internet: www.wvb.net

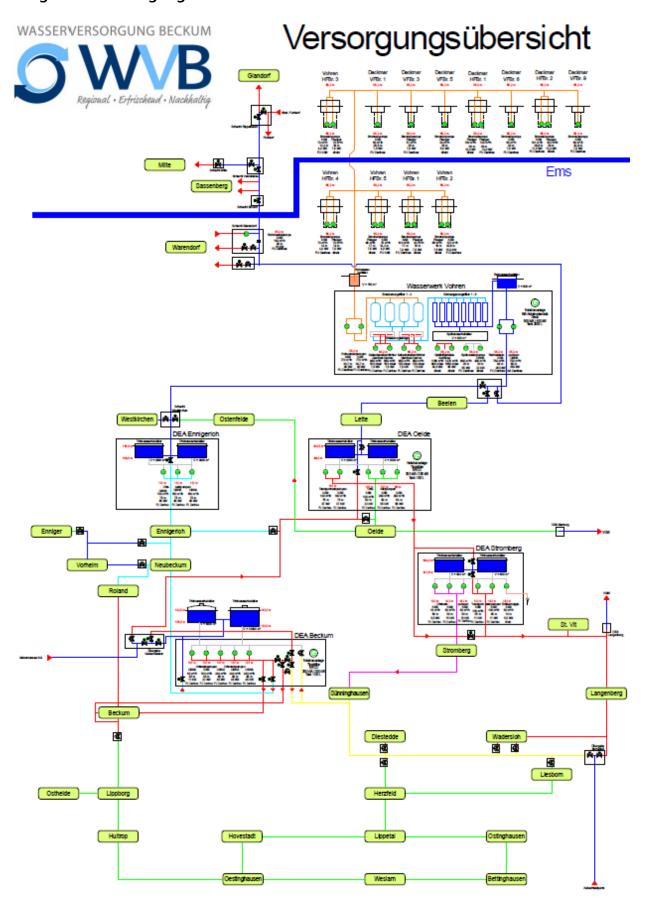
Trinkwasseranalyse

(Jahresmittelwerte aus 2016 für das Versorgungsgebiet der Wasserversorgung Beckum GmbH)

Versorgungszone I: Beckum (ohne Ortsteil Neubeckum), Lippetal (Ortsteile Lippborg, Heintrop, Büninghausen und Hultrop)

Versorgungszone II: Beckum (Ortsteil Neubeckum), Oelde, Ennigerloh, Beelen, Warendorf (Ortsteil Vohren), Ahlen (Ortsteile Vorhelm und Tönnishäuschen), Rheda-Wiedenbrück (Ortsteile Batenhorst und St. Vit)

Versorgungszone III: Wadersloh, Lippetal (Ortsteile Oestinghausen, Herzfeld, Hovestadt, Schoneberg, Nordwald, Niederbauer, Krewinkel-Wiltrop und Brockhausen), Langenberg, Bad Sassendorf (Ortsteile Ostinghausen, Bettinghausen, Bettinghausen und Weslarn)


Parameter Para			Zone I	Zone II	Zone III			n	Grenzwert
Algorithm Parameter	Parameter	Einheit	Stadt				Schacht	Schacht	Trinkwasser- verordnung
Beath-grant to grift 2 Mg, yerror more	Allgemeine Parameter		Deckum						(Trinkwy)
Column-140e 1-91 1-93		mmol/I	0,08	0,23	0,09	0,04	0,14	0,09	
Beartonic Lattalroper to a 5 ° C	-	mg/l	-6,4	-12,7	-4,7	-1,3	-16,2	-4,2	5,0
Flacture (See 4.00 mm) Miles Mil		°dH	_	_			_	8,2	
Gooder or grammal protectioner (CIOCS)									
Separate Professional Control Contro				-					0,5
Gench Genche Generate organization Generate or									
Geambridge Gea		mg/i		_		_			ohno
Cosambrine		ma/l							onne
Controllary Againstaw Control									
Hydrogenerizate (15Ch) Mgs Mg 158,8 231,5 18,34 122,5 219,6 17,7									ohne
Section	Härtebereich (nach Wasch- u. Reinigungsmittelgesetz)		2 (mittel)	3 (hart)	2 (mittel)	1 (weich)	3 (hart)	2 (mittel)	
Magnetian-Heate **obt 1.7						122,5		162,2	
pt-West child child statistics of the property						_		_	
ph/West noth Calcisatiopung mg 7,71 7,42 7,74 7,93 7,45 7,96 7,16		°dH							
Sign_parpidex (S)									6,5 - 9,5
Summaria (Fig.)									
Survivage and the pirk 3,0 (kg, cyNery)		ma/l		_	-			-	
Samme Erick Author (Value)			_		_	_			
Tribung MTU									
Wasserbemperature									1,0
Ammonium (Pet.)		_							
Ammonian Sickstoff (θH ₂ N)	Kationen								
Carbount (Car)									0,5
Sean(Fix) possent									
Kallun (C)									
Magnan (Mg) mgr 5.2 5.5 4.9 5.2 4.6 4.9									0,2
Margan (Mh), pesamt									
Natrium (Na)				_					0.05
Animate March Ma									
Calond (CP)				,-		,-		- 7	
Cyanid (CN), gesamt	Bromat	mg/l	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	0,01
Floorid (F)	Chlorid (CI)	mg/l	29,4	50,9	8,1	25,3	42,1	9,7	250
Nerte (NO ₂)		mg/l							
Netral Stackstoff (NO ₂ -N)									
Nitrit (NO ₂) mg/l < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,02 < 0,005 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 < 0,006 <				_					50
Ntrin-Sticistoff (NO2-N)									0.5
Phosphat (PQ ₄), ortho- mg/l < 0,10 < 0,10 < 0,10 < 0,11 < 0,10 < 0,10 < 0,10 Phosphat (PQ ₄), ortho- mg/l < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,03 < 0,									0,5
Phosphor (P), gesimt									
Sulfat (SQL) mg/l 39,2 64,2 30,2 30,5 67,9 31,8 250 Summe Nirat/50 und Nirit/3 mg/l 0,2 0,2 0,1 0,2 0,2 0,1 1 Anorganische Spurenelmente Allminium (A), gesant mg/l 0,01 < 0,01									
Aluminium (A), gesamt mg/l 0,01 < 0,01 0,02 0,01 0,02 0,005 0,005 0,0005									250
Aluminium (Al), gesamt	Summe Nitrat/50 und Nitrit/3	mg/l	0,2	0,2	0,1	0,2	0,2	0,1	1
Antimon (Sb)	Anorganische Spurenelemente								
Arsen (As)									
Biel (Pb)									
Bor (B)									
Cadmium (Cd) mg/l < 0,0002 < 0,0002 < 0,0002 n.u. n.u. n.u. n.u. 0,003 Chrom (Cr), gesamt mg/l < 0,001			_						
Chrom (Gr), gesamt									
Xupfer (Clu)									
Nckel (N)						,			
Quecksilber (Hg) mg/l < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001									
Uran (U) mg/l 0,0002 0,0004 < 0,0001 0,0002 0,0003 < 0,0001 0,001 Organische Spurenelemente 0,0001 < 0,0001			< 0,0001		< 0,0001	< 0,0001		< 0,0001	0,001
Organische Spurenelemente mg/l < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,000									
1,2-Olchlorethan mg/l < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001		mg/l	0,0002	0,0004	< 0,0001	0,0002	0,0003	< 0,0001	0,01
Benzo (a)-pyren mg/l < 0,000002 < 0,000002 < 0,000002 n.u. n.u. n.u. n.u. 0,00001 Berzo I mg/l < 0,0001			. 0.000	. 0.000		. 0 ****	. 0.000	. 0 ****	0.000
Berzol mg/l < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001				_					
Epichiorhydrin									
Polyzykl ische aromatische Kohlenwasserstoffe (PAK) mg/l < 0,000005 < 0,000005 < 0,000005 n.u. n.u. n.u. n.u. 0,0001 Tetrachlorethen und Trichlorethen mg/l < 0,0001		_	_				-,		
Tetrachlorethen und Trichlorethen mg/l < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 < 0,0001 n.u. n.u. n.u. n.u. n.u. n.u. n.u. 0,0005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,0				-,					
Trihalogenmet hane (THM) mg/l < 0,0001 < 0,0001 n.u. n.u. n.u. n.u. 0,005 Pflanzenschutzmittel u. Biozidprodukte (Einzelsubstanz) mg/l < 0,00005				_					
Pflanzenschutzmittel u. Biozidprodukte (Einzelsubstanz) mg/l < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00005 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 </td <td></td> <td>_</td> <td>_</td> <td>_</td> <td>-,</td> <td></td> <td></td> <td></td> <td></td>		_	_	_	-,				
Pflanzenschutzmittel u. Biozidprodukte (insgesamt) mg/l < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025 < 0,00025		_							
Vinylchlorid mg/l < 0,00005 < 0,00005 n.u. n.u. n.u. n.u.	Pflanzenschutzmittel u. Biozidprodukte (insgesamt)		< 0,00025	< 0,00025	< 0,00025	< 0,00025	< 0,00025	< 0,00025	0,0005
	Vinylchlorid	mg/l	< 0,00005	< 0,00005	< 0,00005	n.u.	n.u.	n.u.	0,0005

ssers kann sich ändern, z.B. durch Schwankungen in der Rohwæsserqualität, durch Umstellungen in der Aufbereitung, durch unterschiedliche Versorgungen oder durch Reaktionen in den Transportleitungen. Eine Haftung aufgrund der Analysenangaben muss daher ausgeschlossen werden.

n.u. = nicht untersucht

 $^{^1}$ Gelsenwasser/Aabach-Taisperre/Wasserwerk Vohren <= Messwert ist kleiner als die analytische Bestimmungsgrenze bzw. Messwert ist kleiner als ...

Anlage 18 Versorgungsübersicht

Anlage 19 Risikoabschätzung nach DIN EN 15975-2

Risikoabschätzung nach DIN EN 15975-2

ldent								Fintrittswahr-	Eintrittswahr- Schadens-		sikoabschätzung Handlungsbedarf			
lummer	Gefährdungskategorien	zutreffend	Gefahren durch	Auswirkungen	Ereignisauslöser	Beschreibung der Verursacher	(bereits) getroffene Schutzmaßnahmen	scheinlichkeit	ausmaß		ittel hoch	1 2		Maßnahmen
	Allgemein Kleinanlagen zur Eigenwasserversorgung	х	belastetes Grundwasser durch Nitrat und mikrobiologische Verkeimungen	Nichteinhaltung der TrinkwV (Grenzwertüberschreitung)	Landwirtschaft, anthropogene Einflüsse	diverse	ländliche Erschließung in Teilbereichen	gering	gering					Ausbau des zentralen Trinkwassemetzes (ländliche Erschließung/Ortsnetzerweiterung)
	Wasserschutzgebiet		Einleitung belastetes Niederschlagswasser in	I										
	Wohngebiete und Kleingewerbe	X	den Boden	Schadstoffeintrag	Undichtigkeiten		keine	gering	mittel					
	Gewerbe- und Industriegebiete	X	Austritt von wassergefährdenden Stoffen	Schadstoffeintrag	Unfälle, Undichtigkeiten	alle Betriebe im WSG	keine bekannt	mittel	mittel					
	Freizeit- und Grünflächen Landwirtschaft	x	Einsatz von Pflanzenschutzmitteln, Verwesung intensive Bewirtschaftung, Düngen, Spritzen, geringe Überwachungsmöglichkeiten, Ställe,	Schadstoffeintrag Schadstoffeintrag	unsachgemäßer Einsatz, Undichtigkeiten	diverse landwirtschaftliche Betriebe	keine bekannt landwirtschaftliche Beratung, freiwillige Vereinbarungen, Bodenanalysen, Abdichtung	gering mittel	gering mittel			x		Kooperation Landwirtschaft/Wasserwirtschaft im Kreis Warendorf
1.05	Forstwirtschaft	x	Silagemieten Holzlagerplätze, Kalken, Spritzen	Schadstoffeintrag		Spritzen in WSG	der Lagerplätze Information der Forstwirte, Forstwirte in landwirtschaftlicher Kooperation	gering	gering					im roes warehoor
							vertreten							
	Verkehrswege und -flächen	X	Transport von wassergefährdenden Stoffen	Schadstoffeintrag	Unfall	Bundesstraßen, Kreisstraßen	keine	gering	mittel					
	Gewässer	X	Gewässerverschmutzung	Schadstoffeintrag	Fehleinleitungen		keine	gering	gering					Aufsichtsbehörden prüfen, ob Kanäle auf
	Abwasser und Kanalisation	X	Abwasserkanäle, dezentrale Kleinkläranlagen	Schadstoffeintrag Anstieg der Nitratwerte, Wegfall von	Undichtigkeiten		regelmäßige Dichtheitsprüfungen	mittel	mittel			Х		Dichtigkeit geprüft sind
1.09	Natürliche Bedingungen	-	Waldsterben	Deckschichten		Luftverschmutzung	trifft nicht zu	-	-					
1.10	Wasserwirtschaftliche Nutzung	X	Brunnen, Sonstige	Schadstoffeintrag, Mengenkonkurrenz	Undichtigkeiten, Entnahmen	verschiedene Brunnen der Landwirtschaft etc.	keine	mittel	mittel					
	Eigennutzung	X	unsachgemäßer Bau und Betrieb der eigenen Brunnen	Schadstoffeintrag	Undichtigkeiten	bisher wurden keine Schadstoffeinträge festgestellt	sachgerechter Bau der Brunnen durch Fachbetriebe	gering	mittel					
	Nutzung durch Dritte Grundwassermessstellen	- X	nicht abgedichtete Pegel, nicht verschlossene	Schadstoffeintrag	Undichtigkeiten, Sabotage	sachgemäß ausgebaut, eigene Pegel	Prüfung bei Verdacht, eigene Pegel werden	garing	mittel					
1.13		^	Pegel Altdeponie	Schadstoffeintrag	Undichtigkeiten Sabotage	keine	verschlossen Messpegel der Wasserbehörde	gering -	mittel -					
	Geothermieanlagen	x	unsachgemäße Tiefbohrungen	Schadstoffeintrag	Undichtigkeiten	diverse Anlagen, bisher nicht genehmigungspflichtig, daher nicht bekannt	messega da masabaro de	gering	mittel					
1.16	Biogasanlagen	x	unsachgemäßer Bau, unsachgemäße Lagerung	Schadstoffeintrag	Undichtigkeiten	Biogasanlagen	zugelassene Anlagen, Kontakt über landwirtschaftliche Kooperation und Zusatzberatung	mittel	mittel					
2	Wassergewinnung	X		lur.	lo control occu		I Daniel Control							
		X	Ausfall Brunnenpumpen Schadstoffe im Wasser	Wassemangel Wassemangel	Stromausfall, technischer Defekt Schadstoffeintrag in der Vergangenheit		Reservepumpen Schutzzonen, Wasserfremdbezug	gering gering	gering gering					
2.01	Brunnen	X	Verkeimung Oberflutung	Wassermangel Gefährdung der Trinkwasserhygiene	durch Instandhaltung Hochwasser		Schutzzonen, Wasserfremdbezug Hochwasserschutz im Rahmen der Wasserrahmenrichtlinie, Renaturierung der	gering gering	gering gering					
2.02	Sickerfassungen		Versiegen in Trockenperioden	Wassermangel			Ems, Talgräben Spülen, sorgfältiges Arbeiten, Desinfektion nach	_	-					
	-	X	Zusetzen der Leitungen	Wassemangel	mangelnde Wartung		Arbeiten und reduzierte Entnahme regelmäßiges Spülen und Molchen	gering	gering					
2.03	Rohwasserleitungen	X	Rohrbruch	Wassermangel	Frost, Alterung		keine	gering	gering					
2.04	Gebäude- und Objektschutz	X	Verkeimung unerlaubter Zutritt	Wassermangel Schadstoffeintrag, Anlagenausfall	Einbruch Fremde		keine Einbruchsicherung bei Gebäuden und Brunnenschächte über Fernwirkanlage,	gering gering	mittel gering					
		-	unerlaubten Zutritt	Schadstoffeintrag, Anlagenausfall	Einbruch Fremde		Brunnenschächte verschlossen Quellen verschlossene Schächte	-						
2.05	Schutzzone 1	x	wassergefährdende Handlungen	Schadstoffe	durch Instandhaltungsarbeiten	ungeeignete Arbeitsmittel, fehlerhafter Umgang mit Gefahrstoffen bei Regenerierungsmaßnahmen	technische Schutzmaßnahmen	mittel	gering					
		x	anthropogeogene Veränderung	Nitrat, PSM	Düngung	landwirtschaftliche Nutzung	Rohwasseranalyse, ausreichende Deokschichten, landwirtschaftliche Kooperation, Zusatzberatung durch LWK NRW, Grundwassergütemessstellen	mittel	mittel			x		Kooperation Landwirtschaft/Wasserwirtschaft im Kreis Warendorf, regelmäßiges Monitoring ausgewählter Vorfeldmessstellen
2.06	Rohwasserqualität			Spurenstoffe, Mikroschadstoffe	Vorfluter Ems	urbanes Leben	Aufklärung, Gesetzgebung	gering	mittel					
		X	Urankonzentration	Strahlung Aufkonzentration von Schadstoffen in den	geogen		Messungen erfolgt	gering	gering					
		X	Klimawandel	Vorflutern, Uferfiltratanteil zu gering	CO ₂ -Ausstoß	1	Aufklärung, Klimaschutz Erde	gering	gering		_			
2.07	Wasserrechte	x	Auslaufen der Wasserrechte	Wassermangel	Nichtüberwachung der Termine, Nichtverlängerung alter Wasserrechte Klimawandel, konkurrierende Nutzung		planmäßige Überwachung der Wasserrechte, frühzeitige Neubeantragung Wasserrecht, Austausch mit	gering	gering					
2.08	Rohwassemenge	X		Wassermangel zu geringe Grundwasserneubildungsrate, feblande Infiltrationsmannen durch Verfilder	Wasserdargebot		Aufsichtsbehörden, LWK NRW	gering	gering					
,	Wasseraufbereitung	Х	Klimawandel	fehlende Infiltrationsmengen durch Vorfluter (Ems)	CO ₂ -Ausstoß	urbanes Leben, fehlende Niederschläge	Aufklärung, Klimaschutz Erde	gering	gering					
		x	Gesamtausfall	manalada Varrerran	Stromausfall	Chromungerous tasks Massal	mobile Netstromanness to Warrantis	garden .	garier.		T			
	Wasserwerk gesamt Belüftung	X	Ansaugung veruneinigter Außenluft	mangelnde Versorgung Verkeimung	schadstoffbelastete Umgebungsluft	Stromversorger, techn. Mangel	mobile Notstromaggregate, Wasserspeicher Luftfilter	gering gering	gering gering					
	Enteisenung	X	Materialalterung, Verklumpung, Verbackung, Materialaustrag	erhöhter Eisengehalt im Auslauf	Wartungsfehler	geschlossene Behälter	regelmäßiges Rückspülen, Sichtkontrollen, Wasseranalysen, Durchflussmenge	gering	gering					
3.04	Entsäuerung (Flachbettbelüfter)	х	zu geringer Durchfluss, zu geringe Luftleistung	keine ausrechende Entsäuerung, keine ausreichende Sauerstoffanreicherung	Wartungsfehler	zusetzen der Lüftungsrohre	regelmäßige Reinigung des Flachbettbelüfters, Messung des Luftwiderstandes	gering	gering					
	Entmanganung	X	Materialalterung, Verklumpung, Verbackung, Materialaustrag	erhöhter Mangangehalt im Auslauf	Wartungsfehler		regelmäßiges Rückspülen, Sichtkontrollen, Wasseranalysen, Durchflussmenge	gering	gering					
	Desinfektion (nur im Bedarfsfall) Reinwasserpumpen	- X	Ausfall der Anlage Ausfall	Verkeimung des Trinkwassers	Materialmangel, techn. Störung Stromausfall, technischer Defekt		regelmäßige Wartung durch Fachfirma redundante Pumpen, Wasserspeicher	- nering	- nerina					
3.08	Probenahme/Wasseranalyse	X	fehlerhafte Probenahme	Versorgungsdruck, Wassermangel Verkeimung	-	eigenes Personal	nur zugelassene Probenehmer	gering gering	gering gering					
3.09	Notstromversorgung, Betriebsmittel Leitstand/Störungsüberwachung	X	Stromausfall Netz Stromausfall, technischer Defekt	eingeschränkte Versorgungssicherheit	Stromausfall, technischer Defekt	öffentliche Stromnetze diverse	ein stationäres Notstromaggregat	gering	gering					
	Gebäude und Objektschutz	X	unerlaubten Zutritt	keine Schadstoffeintrag, Anlagenausfall	Störung Sabotage	Fremde	USV, Alle Anlagen über Handsteuerung Einbruchsicherung bei Gebäuden über Fernwirkanlage, Anlagen verschlossen	gering gering	gering gering					
3.12	Rohwasserqualität	x	Rohrbruch, veränderte Parameter des Trinkwassers, technische Störung in der Anlage	Wassermangel, Verkeimung	Störung		keine	gering	gering					
				1		1				and the second				

ldent	Gefährdungskategorien	zutreffend	Gefahren durch	Auswirkungen	Ereignisauslöser	Beschreibung der Verursacher	(bereits) getroffene Schutzmaßnahmen	Eintrittswahr-	Schadens-	Risil	koabschät	zung	Han	ndlungsbed	larf	Maßnahmen
Nummer	Clairdingsactgoren	Ludenena	Octanien dator	Paswindingeri			(bereis) genoticite obtavelikasianien	scheinlichkeit	ausmaß	niedrig	mittel	hoch	1	2	3	magnamen
3.14	Verkeimung in den Anlagen Wasserspeicherung	Х	Verkeimung der Aufbereitungsanlage	Verkeimung	Rohwasser, Filtermaterial, verkeimtes Spülwasser aus Wasserspeicher	Instandhaltungarbeiten, Verkeimung des Rohwassers oder des Filtermaterials	sorgfältiges sachgerechtes Arbeiten	gering	gering					oxdot		
•		х	Gesamtausfall, Verkeimung, kein Zulauf, Baumangel	Verkeimung	Standzeiten, Instandhaltungsarbeiten Zulauf, defekte Armaturen	diverse	regelmäßige Kontrollen und Probenahmen, täglicher Wasseraustausch	gering	gering							
4.01	Wasserspeicher	х	zu geringes Speichervolumen	nicht ausreichende Versorgung während hoher Abnahme	sehr hohe Abnahme, Rohrbruch	Arbeiten im Bereich Leitungen, Löschwasserentnahme	für Normalfall sind die Behälter ausreichend dimensioniert, Umstellung des Netzes	gering	gering							
		х	zu geringes Speichervolumen	nicht ausreichende Versorgung während hoher Abnahme	erhöhter Wasserbedarf an Spitzentagen (Tagesabgabe: >42.000 m²/d, Stundenabgabe: >2.600 m²/h)		Behälterstudie (IngBüro Wehr)	gering	gering							
4.02	Sicherheitseinrichtungen	х	Auslaufendes Wasser	Wassermangel	Rohrbruch		bei definiertem Durchfluss erfolgt Störmeldung, Fernwirktechnik, Entstördienst	gering	gering							
4.03	Probenahme/Wasseranalyse	-	-			Probenahmestellen		-	-							
	Pumpen	-	-					-	-					\Box		
4.05	Notstromversorgung		mangeInde Stromversorgung	Wassermangel	Stromausfall		stationäre Notstromversorgung	gering	gering					\longrightarrow		
4.08	Leitstand/Störungsüberwachung	Х	Stromausfall, technischer Defekt	keine	Störung	diverse	USV, alle Anlagen über Handsteuerung	gering	gering					\longrightarrow		
4.07	Gebäude- und Objektschutz	x	unerlaubten Zutritt	Schadstoffeintrag, Anlagenausfall	Einbruch Fremde		Einbruchsicherung bei Gebäuden über Fernwirkanlage nur in Hunteburg, Anlagen verschlossen	gering	gering							
4.08	Be- und Entlüftung	х	ansaugen verunreinigter Außenluft		schadstoffbelastete Umgebungsluft		Be- und Entlüftung über spezielle Filtermedien	gering	gering							
5	Druckerhöhungen/Pumpstationen															
5.01	Druckerhöhungen	x	Gesamtausfall Stromausfall, Pumpenausfall, Undichtigkeit, Ausfall Steuerung	keine Versorgung	Stromausfall, techn. Defekt		regelmäßige Wartung, Notstromversorgung, Steuerung mit Handbetrieb möglich, redundante Pumpen	gering	gering							
5.02	Probenahme/Wasseranalyse	-	-				Probenahmestelle	-	-							
5.03	Notstromversorgung	Х	Stromausfall Netz	eingeschränkte Versorgungssicherheit	Stromausfall, technischer Defekt	öffentliche Stromnetze	stationäre Notstromaggregate	gering	gering					\Box		
5.04	Leitstand/Störungsüberwachung	Х	Stromausfall, technischer Defekt	keine	Störung	diverse	USV, alle Anlagen über Handsteuerung	gering	gering							
5.05	Gebäude- und Objektschutz	х	unerlaubten Zutritt	Schadstoffeintrag, Anlagenausfall	Einbruch Fremde		Einbruchsicherung bei Gebäuden über Fernwirkanlage, Anlagen verschlossen	gering	gering							
	Wasserqualität	-	keine Veränderungen möglich					-	-					لــــــــــــــــــــــــــــــــــــــ		
6	Trinkwassernetz					Te	h e ser i a a a a a a a									
6.01	Rohmetz		Rohrbruch	kurzfristige Versorgungsausfälle	Materialermüdung, Fremdeinwirkung	Frost, Alter der Leitungen, äußere Einwirkungen	kontinuierliche Instandhaltung und Erneuerung des Netzes	mittel	mittel					\sqcup		
		Х	Druckschwankungen	kurzfristige Versorgungsausfälle	Lastwechsel, Ermüdung des Rohmetzes		Zielnetzplanung	gering	gering					\longrightarrow		
6.02	Hausanschlüsse	х	Rohrbruch	kurzfristige Versorgungsausfälle	Materialermüdung, Fremdeinwirkung	Frost, Alter der Leitungen, äußere Einwirkungen	kontinuierliche Instandhaltung und Erneuerung des Netzes	mittel	mittel					\sqcup		
6.03	Armaturen	Х	Ausfall	kurzfristige Versorgungseinschränkungen	Materialermüdung, Fremdeinwirkung	Frost, Alter der Leitungen äußere Einwirkungen	ues iveizes	mittel	mittel					\sqcup		
		Х	Ausfall	kurzfristige Versorgungseinschränkungen			Reserve über Wasserspeicher, gering Anteil Zukauf	gering	gering					\sqcup		
6.04	Wasserbezug	Х	Verkeimung	Ausfall der Versorgung			Reserve über Wasserspeicher, gering Anteil Zukauf	gering	gering							
		Х	Klimawandel	Reduzierung Kontigent aus der Aabach- Talsperre			Potential Fremdbezug Gelsenwasser AG	mittel	gering					\sqcup		
6.05	Wasserqualität	X	Querverbindungen zu Eigenversorgungen, Klimawandel	Verkeimung	W	fehlerhafte Kundenanlagen	Eigenversorgungsanlagen werden bei Bekanntwerden erfasst	mittel	mittel					\sqcup		
6.06	Interne Zählerschächte. Armaturen (RV)	X	Klimawandel Ausfall	Erhöhung des Verkeimungspotentials keine	Wassertemperatur	CO ₂ -Ausstoß	Verlegetiefe der TW-Leitungen bei ca. 1 m	gering	mittel					\vdash		
0.00	interie Zanierschachte, Afmaturen (RV)	X	Rohrbruch, Ausfall Komponenten	keine			 	gering gering	gering gering					\vdash		
		x	Verkeimung durch stagnierendes Wasser	keine			1	gering	gering					\vdash		
6.07	Kundenanlagen	X	Frostschäden	keine				gering	gering					\vdash		
-	•	X	mikrobiologisch belastete Wasserzähler	Verkeimung des Trinkwassers		Wasserzähler	Hygienekontrollen der Wasserzähler beim Lieferanten	gering	gering					\Box		
		Х	Rohrbruch, Ausfall Komponenten	keine			Detainer	gering	gering					\vdash		
6.08	Großkundenanlagen	x	Druckschläge in Folge fehlender Rückschlagventile	keine				gering	gering							
6.09	Demografischer Wandel	Х	Bedarfsrückgang, unbewohnte Gebäude	Erhöhung des Verkeimungspotentials	Rückgang der Einwohnerzahlen		Zielnetzplanung, Spitzenabdeckung	mittel	gering					\vdash		
6.10	Weiterverteilergeschäft	x	hohe Stundenleistungen	(kurzzeitiger) erhöhter Wasserbedarf	Truckgarig de Elimotine Zariet		Rohmetzberechnung, Netzstudien (IngBüro Wehr)	mittel	gering							Darstellung vertraglicher Stundenleistungen, absolute Jahresmengen
0.10				1										\leftarrow		
6.11	Löschwasserversorgung	х	nicht ausreichende Löschwasserversorgung	kurzfristige Versorgungsausfälle			Erstellung Löschwassermengenplan	gering	gering							

Bearbeitungshinweise zu den Spalten der Tabelle

Identnummern: Die Identnummern dienen der Einteilung der Gefährdungen und als Suchhilfe.
Gefährdungskategorien: Es gibt Hauptbereiche der Gefährdungen und dazu Einzelgefährdungen. Die Erfasssung sollte möglichst detailliert erfolgen.

zutreffend: Alle zutreffenden Gefährdungen sind anzukreuzen.

Gefahren durch: Beschreibung der Tätigkeiten oder Anlagen, die zu den Gefährdungen führen.
Auswirkungen: Beschreibung der Auswirkungen durch die Gefahren.
Ereignisauslöser: Abweichend vom Normalbetrieb können Ereignisse wie Undichtigkeit etc. eine Gefahr erst auslösen.

Beschreibung der Verursacher: Die Verursacher sollten möglichst genau bezeichnet werden. Zu einzelnen Gefahren kann es mehrere Verursacher geben.
Bereits getroffene Schutzmaßnahmen: Die bereits getroffenen Schutzmaßnahmen zum Umgang mit den Gefährdungen sind aufzuführen.
Eintrittswahrscheinlichkeit: Es ist die Wahrscheinlichkeit für das Wirksamwerden einer Gefährdung in "gering", "mittel" und "hoch" einzustufen.
Schadensausmaß: Die Folgen bei Eintritt einer Gefährdung und deren Auswirkungen sind in "gering", "mittel" und "hoch" einzustufen.
Risikoabschätzung: Die Abschätzung erfolgt mit Hilfe der Tabelle 1 aus der W 1000. Die Felder werden farbig markiert.
Handlungsbedarf: Entsprechend der Risikoabschätzung ist die Priorität für erforderlichen Handlungsbedarf festzulegen. Die Abarbeitung sollte entsprechend den Prioritäten erfolgen.
Maßnahmen: Die Maßnahmen (die sich aus dem Handlungsbedarf ergeben) sind zu beschreiben oder es ist auf ein separates Maßnahmenbaltt zu verweisen. Ziel der Maßnahmen ist, möglichst eine Reduzierung der Risikoeinstufung zu erreichen.

Tabelle 1 – Beispielmatrix zur Risikoabschätzu

			ichadensausmaf	
		GERING	MITTEL	носн
chinele	GERING	Niedriges Risiko	Niedriges Risiko	Hohes Risiko
wahrscheid	MITTEL	Niedriges Risiko	Mittleres Risiko	Hohes Risiko
Cinerita	ноон	Mittieres Risiko	Hohes Risiko	Hohes Risiko